Peptide nucleic acid, the state-of-the-art toll for study and control of bacterial infections
Subject Areas : Bacteriology
Hanar Narenji
1
,
Hossein Samadi Kafil
2
*
1 - Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
2 - Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
Keywords: Peptide nucleic acids, gene knock down, Antibiotic resistance.,
Abstract :
The increasing emergence of antibiotic-resistant bacteria, coupled with the slow development of new therapeutic alternatives, underscores the urgent need for novel strategies to combat these pathogens. Peptide nucleic acids (PNAs) are synthetic molecules capable of binding to DNA and RNA, making them useful for a variety of applications, including gene expression inhibition and gene knockdown to suppress bacterial growth. To effectively target a selected gene, it is crucial to choose a homologous sequence with the highest activity, and the PNA sequence must be tailored to the characteristics of the target gene. By targeting conserved genes within a specific genus, it is possible to inhibit the growth of a broad spectrum of pathogens. This study reviews researchs that have successfully achieved gene knockdown and bacterial growth inhibition. The findings offer a new perspective on therapeutic strategies, however, further investigations into the immunological responses, toxicity, and pharmacokinetics of PNAs are essential for their clinical application. Indeed, PNA could be used as a potential therapeutic option in future clinical applications.
1. Carson LM, Watson EE. Peptide Nucleic Acids: From Origami to Editing. Chempluschem. 2024;89(11):23.
2. Abbasi s, Emtiazi G. Antimicrobial peptides of haloarchaea: Properties and applications of halocin. Journal of Microbial World. 2022;15(51):88-108.
3. Good L, Nielsen PE. Peptide nucleic acid (PNA) antisense effects in Escherichia coli. Curr Issues Mol Biol. 1999;1(1-2):111-6.
4. Jirakittiwut N, Sathianpitayakul P, Santanirand P, Akeda Y, Vilaivan T, Ratthawongjirakul P. Peptide nucleic acid-immobilised paper combined with multiplex recombinase polymerase amplification for the ultrasensitive and rapid detection of rifampicin-resistant tuberculosis. Sci Rep. 2025;15(1):025-86691.
5. Liang S, He Y, Xia Y, Wang H, Wang L, Gao R, et al. Inhibiting the growth of methicillin-resistant Staphylococcus aureus in vitro with antisense peptide nucleic acid conjugates targeting the ftsZ gene. Int J Infect Dis. 2015 1//;30:1-6.
6. Sannigrahi A, De N, Bhunia D, Bhadra J. Peptide nucleic acids: Recent advancements and future opportunities in biomedical applications. Bioorg Chem. 2025;155(108146):10.
7. Narenji H, Gholizadeh P, Aghazadeh M, Rezaee MA, Asgharzadeh M, Kafil HS. Peptide nucleic acids (PNAs): currently potential bactericidal agents. Biomed Pharmacother. 2017;93:580-8.
8. Narenji H, Gholizadeh P, Aghazadeh M, Rezaee MA, Asgharzadeh M, Kafil HS. Peptide nucleic acids (PNAs): currently potential bactericidal agents. Biomed Pharmacother. 2017;93:580-8.
9. Bai H, Sang G, You Y, Xue X, Zhou Y, Hou Z, et al. Targeting RNA polymerase primary σ70 as a therapeutic strategy against methicillin-resistant Staphylococcus aureus by antisense peptide nucleic acid. PLoS One. 2012;7(1).
10. Greenberg DE, Marshall-Batty KR, Brinster LR, Zarember KA, Shaw PA, Mellbye BL, et al. Antisense phosphorodiamidate morpholino oligomers targeted to an essential gene inhibit Burkholderia cepacia complex. The Journal of infectious diseases. 2010;201(12):1822-30.
11. Egholm M, Buchardt O, Christensen L, Behrens C, Freier SM, Driver DA, et al. PNA hybridizes to complementary oligonucleotides obeying the Watson–Crick hydrogen-bonding rules. Nature. 1993;365(6446):566-8.
12. Egholm M, Buchardt O, Nielsen PE, Berg RH. Peptide nucleic acids (PNA). Oligonucleotide analogs with an achiral peptide backbone. J Am Chem Soc. 1992;114(5):1895-7.
13. Demidov V, Frank-Kamenetskii MD, Egholm M, Buchardt O, Nielsen PE. Sequence selective double strand DNA cleavage by peptide nucleic acid (PNA) targeting using nuclease S1. Nucleic Acids Res. 1993;21(9):2103-7.
14. Egholm M, Christensen L, Deuholm KL, Buchardt O, Coull J, Nielsen PE. Efficient pH-independent sequence-specific DNA binding by pseudoisocytosine-containing bis-PNA. Nucleic Acids Res. 1995;23(2):217-22.
15. Patenge N, Pappesch R, Krawack F, Walda C, Mraheil MA, Jacob A, et al. Inhibition of growth and gene expression by PNA-peptide conjugates in Streptococcus pyogenes. Molecular Therapy-Nucleic Acids. 2013;2:e132.
16. Wierzba AJ, Richards EM, Lennon SR, Batey RT, Palmer AE. Unveiling the promise of peptide nucleic acids as functional linkers for an RNA imaging platform. RSC Chem Biol. 2024;6(2):249-62.
17. Hanvey JC, Peffer NJ, Bisi JE, Thomson SA, Cadilla R, Josey JA, et al. Antisense and antigene properties of peptide nucleic acids. Science. 1992;258(5087):1481-5.
18. Møllegaard NE, Buchardt O, Egholm M, Nielsen PE. Peptide nucleic acid. DNA strand displacement loops as artificial transcription promoters. Proceedings of the National Academy of Sciences. 1994;91(9):3892-5.
19. Soofi MA, Seleem MN. Targeting essential genes in Salmonella enterica serovar typhimurium with antisense peptide nucleic acid. Antimicrobial agents and chemotherapy. 2012;56(12):6407-9.
20. Farshineh Saei S, Baskevics V, Katkevics M, Rozners E. Recognition of Noncanonical RNA Base Pairs Using Triplex-Forming Peptide Nucleic Acids. ACS Chem Biol. 2025;20(1):179-85.
21. Koziel J, Maciag-Gudowska A, Mikolajczyk T, Bzowska M, Sturdevant DE, Whitney AR, et al. Phagocytosis of Staphylococcus aureus by macrophages exerts cytoprotective effects manifested by the upregulation of antiapoptotic factors. PLoS One. 2009;4(4):e5210.
22. D'Andrea LD, Romanelli A. Morphology and Applications of Self-Assembled Peptide Nucleic Acids. Int J Mol Sci. 2024;25(22).
23. Giancola JB, Raines RT. Endosomolytic peptides enable the cellular delivery of peptide nucleic acids. Chem Commun. 2024;60(100):15019-22.
24. MacLelland V, Kravitz M, Gupta A. Therapeutic and diagnostic applications of antisense peptide nucleic acids. Mol Ther Nucleic Acids. 2023;35(1):12.
25. Otter JA, French GL. Molecular epidemiology of community-associated meticillin-resistant Staphylococcus aureus in Europe. The Lancet infectious diseases. 2010;10(4):227-39.
26. Ji Y, Yin D, Fox B, Holmes DJ, Payne D, Rosenberg M. Validation of antibacterial mechanism of action using regulated antisense RNA expression in Staphylococcus aureus. FEMS Microbiol Lett. 2004;231(2):177-84.
27. Nekhotiaeva N, Awasthi SK, Nielsen PE, Good L. Inhibition of Staphylococcus aureus gene expression and growth using antisense peptide nucleic acids. Mol Ther. 2004;10(4):652-9.
28. Meng J, Wang H, Hou Z, Chen T, Fu J, Ma X, et al. Novel anion liposome-encapsulated antisense oligonucleotide restores susceptibility of methicillin-resistant Staphylococcus aureus and rescues mice from lethal sepsis by targeting mecA. Antimicrob Agents Chemother. 2009;53(7):2871-8.
29. Goh S, Stach J, Good L. Antisense effects of PNAs in bacteria. Peptide Nucleic Acids: Springer; 2014. p. 223-36.
30. El-Fateh M, Chatterjee A, Zhao X. A systematic review of peptide nucleic acids (PNAs) with antibacterial activities: Efficacy, potential and challenges. Int J Antimicrob Agents. 2024;63(3):5.
31. Liang S, He Y, Xia Y, Wang H, Wang L, Gao R, et al. Inhibiting the growth of methicillin-resistant Staphylococcus aureus in vitro with antisense peptide nucleic acid conjugates targeting the ftsZ gene. Int J Infect Dis. 2014;30c.
32. Abushahba MF, Mohammad H, Seleem MNJMT-NA. Targeting multidrug-resistant staphylococci with an anti-rpoA peptide nucleic acid conjugated to the HIV-1 TAT cell penetrating peptide. 2016;5:e339.
33. Novick RP, Ross H, Projan S, Kornblum J, Kreiswirth B, Moghazeh S. Synthesis of staphylococcal virulence factors is controlled by a regulatory RNA molecule. The EMBO journal. 1993;12(10):3967-75.
34. Kuhn SM, Preiksaitis J, Tyrrell GJ, Jadavji T, Church D, Davies H. Evaluation of potential factors contributing to microbiological treatment failure in Streptococcus pyogenes pharyngitis. Can J Infect Dis. 2001;12.
35. Patenge N, Pappesch R, Krawack F, Walda C, Mraheil MA, Jacob A, et al. Inhibition of growth and gene expression by PNA-peptide conjugates in Streptococcus pyogenes. Mol Ther Nucleic Acids. 2013;2.
36. Kayaoglu G, Ørstavik D. Virulence factors of Enterococcus faecalis: relationship to endodontic disease. Crit Rev Oral Biol Med. 2004;15(5):308-20.
37. Joyanes P, Pascual A, Martinez-Martinez L, Hevia A, Perea E. In vitro adherence of Enterococcus faecalis and Enterococcus faecium to urinary catheters. Eur J Clin Microbiol Infect Dis. 2000;19(2):124-7.
38. Joyanes P, Pascual A, Martínez‐Martínez L, Hevia A, Perea EJ. In vitro adherence of Enterococcus faecalis and Enterococcus faecium to plastic biomaterials. Clin Microbiol Infect. 1999;5(6):382-6.
39. Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999;284(5418):1318-22.
40. Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS. Extracellular DNA required for bacterial biofilm formation. Science. 2002;295(5559):1487-.
41. Parsek MR, Singh PK. Bacterial biofilms: an emerging link to disease pathogenesis. Annual Reviews in Microbiology. 2003;57(1):677-701.
42. Miller MB, Bassler BL. Quorum sensing in bacteria. Annual Reviews in Microbiology. 2001;55(1):165-99.
43. Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. 2002;15(2):167-93.
44. Baldassarri L, Cecchini R, Bertuccini L, Ammendolia MG, Iosi F, Arciola CR, et al. Enterococcus spp. produces slime and survives in rat peritoneal macrophages. Med Microbiol Immunol. 2001;190(3):113-20.
45. Lowe A, Lambert P, Smith A. Cloning of an Enterococcus faecalis endocarditis antigen: homology with adhesins from some oral streptococci. Infect Immun. 1995;63(2):703-6.
46. Portenier I, Waltimo TM, Haapasalo M. Enterococcus faecalis–the root canal survivor and ‘star’in post‐treatment disease. Endodontic topics. 2003;6(1):135-59.
47. Pucci MJ, Thanassi JA, Discotto LF, Kessler RE, Dougherty TJ. Identification and characterization of cell wall-cell division gene clusters in pathogenic gram-positive cocci. J Bacteriol. 1997;179(17):5632-5.
48. Narenji H, Teymournejad O, Rezaee MA, Taghizadeh S, Mehramuz B, Aghazadeh M, et al. Antisense peptide nucleic acids againstftsZ andefaA genes inhibit growth and biofilm formation of Enterococcus faecalis. Microb Pathog. 2020;139:103907.
49. Hatamoto M, Nakai K, Ohashi A, Imachi HJAm, biotechnology. Sequence-specific bacterial growth inhibition by peptide nucleic acid targeted to the mRNA binding site of 16S rRNA. 2009;84(6):1161-8.
50. Mondhe M, Chessher A, Goh S, Good L, Stach JEJPo. Species-selective killing of bacteria by antimicrobial peptide-PNAs. 2014;9(2):e89082.
51. Minnikin D. Chemical principles in the organization of lipid components in the mycobacterial cell envelope. Res Microbiol. 1991;142(4):423-7.
52. Brennan PJ, Nikaido H. The envelope of mycobacteria. Annu Rev Biochem. 1995;64(1):29-63.
53. Pereira MP, Shi J, Kelley SO. Peptide targeting of an antibiotic prodrug toward phagosome-entrapped mycobacteria. ACS infectious diseases. 2015;1(12):586-92.
54. Wilson JW, Tsukayama DT, editors. Extensively drug-resistant tuberculosis: principles of resistance, diagnosis, and management. Mayo Clin Proc; 2016: Elsevier.
55. Furin J J, Mitnick C D, Shin S S, Bayona J, Becerra M C, Singler J M, et al. Occurrence of serious adverse effects in patients receiving community-based therapy for multidrug-resistant tuberculosis. The International Journal of Tuberculosis and Lung Disease. 2001;5(7):648-55.
56. Yee D, Valiquette C, Pelletier M, Parisien I, Rocher I, Menzies D. Incidence of serious side effects from first-line antituberculosis drugs among patients treated for active tuberculosis. Am J Respir Crit Care Med. 2003;167(11):1472-7.
57. Kulyté A, Nekhotiaeva N, Awasthi SK, Good LJJomm, biotechnology. Inhibition of Mycobacterium smegmatis gene expression and growth using antisense peptide nucleic acids. 2005;9(2):101-9.
58. Siekierska I, Burmistrz M, Trylska J. Evaluating delivery of peptide nucleic acids to Gram-negative bacteria using differently linked membrane-active peptides and their stapled analogs. Bioorg Med Chem Lett. 2024;114(129993):18.
59. Farahani A, Dastranj M, Shamseddin J, Veisi H, Soltani S, Kalantar H. Antibiotic resistance and presence of integron class 1 and class 2 genes amongst Escherichia coli isolates of urine specimens of inpatients and outpatients in Ahvaz, southern of Iran. Journal of Microbial World. 2023;16(56):167-77.
60. Tootoonsaz S, Kargar M. Detection of integrons and gene cassettes among multidrug resistant (MDR) Escherichia coli uropathogenic strains isolated from clinical specimens in Bushehr. Journal of Microbial World. 2024;16(57):263-74.
61. Nouri E, Asadpour L. Antibiotic resistance and frequency of fimH, papC and sfa-foc virulence genes in Escherichia coli isolated from Caspian horse feces in Guilan province. Journal of Microbial World. 2022;15(50):68-77.
62. Lockhart SR, Abramson MA, Beekmann SE, Gallagher G, Riedel S, Diekema DJ, et al. Antimicrobial resistance among Gram-negative bacilli causing infections in intensive care unit patients in the United States between 1993 and 2004. J Clin Microbiol. 2007;45(10):3352-9.
63. Snyder GM, O’Fallon E, D’Agata EM. Co-colonization with multiple different species of multidrug-resistant gram-negative bacteria. Am J Infect Control. 2011;39(6):506-10.
64. Bai H, Sang G, You Y, Xue X, Zhou Y, Hou Z, et al. Targeting RNA polymerase primary sigma70 as a therapeutic strategy against methicillin-resistant Staphylococcus aureus by antisense peptide nucleic acid. PLoS One. 2012;7.
65. Good L, Awasthi SK, Dryselius R, Larsson O, Nielsen PE. Bactericidal antisense effects of peptide–PNA conjugates. Nat Biotechnol. 2001;19(4):360-4.
66. Nezhadi J, Narenji H, Barhaghi MHS, Rezaee MA, Ghotaslou R, Pirzadeh T, et al. Peptide nucleic acid-mediated re-sensitization of colistin resistance Escherichia coli KP81 harboring mcr-1 plasmid. Microb Pathog. 2019;135:103646.
67. Goltermann L, Yavari N, Zhang M, Ghosal A, Nielsen PEJFim. PNA length restriction of antibacterial activity of peptide-PNA conjugates in Escherichia coli through effects of the inner membrane. 2019;10:1032.
68. Daef A, Aly A, Seif El-Din A, El Sherbiny NM, El-Gendy SM. Phenotypic and genotypic detection of extended spectrum beta-lactamase Klebsiella pneumoniae isolated from Intensive Care Units in Assuit University Hospital. Egyptian Journal of Medical Microbiology. 2009;18(2):29-40.
69. Paterson DL, Bonomo RA. Extended-spectrum β-lactamases: a clinical update. Clin Microbiol Rev. 2005;18(4):657-86.
70. Martínez-Martínez L, García I, Ballesta S, Benedí VJ, Hernández-Allés S, Pascual A. Energy-Dependent Accumulation of Fluoroquinolones in Quinolone-Resistant Klebsiella pneumoniaeStrains. Antimicrob Agents Chemother. 1998;42(7):1850-2.
71. Kampranis SC, Maxwell A. Conversion of DNA gyrase into a conventional type II topoisomerase. Proceedings of the National Academy of Sciences. 1996;93(25):14416-21.
72. Pautsch A, Schulz GE. Structure of the outer membrane protein A transmembrane domain. Nat Struct Biol. 1998;5(11):1013-7.
73. Jeannin P, Magistrelli G, Goetsch L, Haeuw J-F, Thieblemont N, Bonnefoy J-Y, et al. Outer membrane protein A (OmpA): a new pathogen-associated molecular pattern that interacts with antigen presenting cells—impact on vaccine strategies. Vaccine. 2002;20:A23-A7.
74. Kurupati P, Tan KSW, Kumarasinghe G, Poh CL. Inhibition of gene expression and growth by antisense peptide nucleic acids in a multiresistant β-lactamase-producing Klebsiella pneumoniae strain. Antimicrobial agents and chemotherapy. 2007;51(3):805-11.
75. Bai H, You Y, Yan H, Meng J, Xue X, Hou Z, et al. Antisense inhibition of gene expression and growth in gram-negative bacteria by cell-penetrating peptide conjugates of peptide nucleic acids targeted to rpoD gene. 2012;33(2):659-67.
76. Abouzeed YM, Baucheron S, Cloeckaert A. ramR mutations involved in efflux-mediated multidrug resistance in Salmonella enterica serovar Typhimurium. Antimicrob Agents Chemother. 2008;52(7):2428-34.
77. Giraud E, Baucheron S, Cloeckaert A. Resistance to fluoroquinolones in Salmonella: emerging mechanisms and resistance prevention strategies. Microbes and Infection. 2006;8(7):1937-44.
78. Velge P, Cloeckaert A, Barrow P. Emergence of Salmonella epidemics: The problems related to Salmonella enterica serotyp Enteritidis and multiple antibiotic resistance in other major serotypes. Vet Res. 2005;36(3):267-88.
79. Boucher R. New concepts of the pathogenesis of cystic fibrosis lung disease. Eur Respir J. 2004;23(1):146-58.
80. Leibovitz A, Dan M, Zinger J, Carmeli Y, Habot B, Segal R. Pseudomonas aeruginosa and the oropharyngeal ecosystem of tube-fed patients. Emerg Infect Dis. 2003;9(8):956.
81. Cryer J, Schipor I, Perloff JR, Palmer JN. Evidence of bacterial biofilms in human chronic sinusitis. ORL. 2004;66(3):155-8.
82. Zegans ME, Shanks RM, O'toole GA. Bacterial biofilms and ocular infections. The ocular surface. 2005;3(2):73-80.
83. Kempf M, Rolain J-M. Emergence of resistance to carbapenems in Acinetobacter baumannii in Europe: clinical impact and therapeutic options. Int J Antimicrob Agents. 2012;39(2):105-14.
84. Kerr KG, Snelling AM. Pseudomonas aeruginosa: a formidable and ever-present adversary. J Hosp Infect. 2009;73(4):338-44.
85. Halling SM, Jensen AE. Intrinsic and selected resistance to antibiotics binding the ribosome: analyses of Brucella 23S rrn, L4, L22, EF-Tu1, EF-Tu2, efflux and phylogenetic implications. BMC Microbiol. 2006;6(1):84.
86. Abushahba MF, Mohammad H, Seleem MN. Targeting Multidrug-resistant Staphylococci with an anti-rpoA Peptide Nucleic Acid Conjugated to the HIV-1 TAT Cell Penetrating Peptide. Molecular therapy Nucleic acids. 2016 Jul 19;5(7):e339.
87. Bai H, Sang G, You Y, Xue X, Zhou Y, Hou Z, et al. Targeting RNA polymerase primary sigma70 as a therapeutic strategy against methicillin-resistant Staphylococcus aureus by antisense peptide nucleic acid. PloS one. 2012;7(1):e29886.
88. Goh S, Loeffler A, Lloyd DH, Nair SP, Good L. Oxacillin sensitization of methicillin-resistant Staphylococcus aureus and methicillin-resistant Staphylococcus pseudintermedius by antisense peptide nucleic acids in vitro. BMC Microbiology. 2015;15.
89. Liang S, He Y, Xia Y, Wang H, Wang L, Gao R, et al. Inhibiting the growth of methicillin-resistant Staphylococcus aureus in vitro with antisense peptide nucleic acid conjugates targeting the ftsZ gene. International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases. 2015 Jan;30:1-6.
90. Hatamoto M, Nakai K, Ohashi A, Imachi H. Sequence-specific bacterial growth inhibition by peptide nucleic acid targeted to the mRNA binding site of 16S rRNA. Appl Microbiol Biotechnol. 2009;84(6):1161-8.
91. Mondhe M, Chessher A, Goh S, Good L, Stach JEM. Species-Selective Killing of Bacteria by Antimicrobial Peptide-PNAs. PloS one. 2014;9(2).
92. Kulyte A, Nekhotiaeva N, Awasthi SK, Good L. Inhibition of Mycobacterium smegmatis gene expression and growth using antisense peptide nucleic acids. Journal of molecular microbiology and biotechnology. 2005;9(2):101-9.
93. Bai H, You Y, Yan H, Meng J, Xue X, Hou Z, et al. Antisense inhibition of gene expression and growth in gram-negative bacteria by cell-penetrating peptide conjugates of peptide nucleic acids targeted to rpoD gene. Biomaterials. 2012;33(2):659-67.
94. Good L, Nielsen PE. Inhibition of translation and bacterial growth by peptide nucleic acid targeted to ribosomal RNA. Proceedings of the National Academy of Sciences. 1998;95(5):2073-6.
95. Good L, Sandberg R, Larsson O, Nielsen PE, Wahlestedt C. Antisense PNA effects in Escherichia coli are limited by the outer-membrane LPS layer. Microbiology. 2000;146(10):2665-70.
96. Nikravesh A, Dryselius R, Faridani OR, Goh S, Sadeghizadeh M, Behmanesh M, et al. Antisense PNA accumulates in Escherichia coli and mediates a long post-antibiotic effect. Molecular Therapy. 2007;15(8):1537-42.
97. Xue‐Wen H, Jie P, Xian‐Yuan A, Hong‐Xiang Z. Inhibition of bacterial translation and growth by peptide nucleic acids targeted to domain II of 23S rRNA. Journal of Peptide Science. 2007;13(4):220-6.
98. Gruegelsiepe H, Brandt O, Hartmann RK. Antisense Inhibition of RNase P mechanistic aspects and application to live bacteria. Journal of Biological Chemistry. 2006;281(41):30613-20.
99. Goh S, Boberek JM, Nakashima N, Stach J, Good L. Concurrent growth rate and transcript analyses reveal essential gene stringency in Escherichia coli. PloS one. 2009;4(6):e6061.
100. Ghosal A, Nielsen PE. Potent antibacterial antisense peptide–peptide nucleic acid conjugates against Pseudomonas aeruginosa. Nucleic acid therapeutics. 2012;22(5):323-34.
101. Maekawa K, Azuma M, Okuno Y, Tsukamoto T, Nishiguchi K, Setsukinai K-i, et al. Antisense peptide nucleic acid–peptide conjugates for functional analyses of genes in Pseudomonas aeruginosa. Bioorganic & medicinal chemistry. 2015;23(22):7234-9.
102. Xia Y, Xiong Y, Li X, Su X. Inhibition of biofilm formation by the antisense peptide nucleic acids targeted at the motA gene in Pseudomonas aeruginosa PAO1 strain. World J Microbiol Biotechnol. 2011;27(9):1981-7.
103. Wang H, He Y, Xia Y, Wang L, Liang S. Inhibition of gene expression and growth of multidrug-resistant Acinetobacter baumannii by antisense peptide nucleic acids. Molecular Biology Reports. [journal article]. 2014;41(11):7535-41.
104. Abdi SN, Ghotaslou R, Asgharzadeh M, Mehramouz B, Hasani A, Baghi HB, et al. AdeB efflux pump gene knockdown by mRNA mediated peptide nucleic acid in multidrug resistance Acinetobacter baumannii. Microb Pathog. 2020;139:103825.
105. Otsuka T, Brauer AL, Kirkham C, Sully EK, Pettigrew MM, Kong Y, et al. Antimicrobial activity of antisense peptide–peptide nucleic acid conjugates against non-typeable Haemophilus influenzae in planktonic and biofilm forms. Journal of Antimicrobial Chemotherapy. 2017;72(1):137-44.
106. Rajasekaran P, Alexander JC, Seleem MN, Jain N, Sriranganathan N, Wattam AR, et al. Peptide nucleic acids inhibit growth of Brucella suis in pure culture and in infected murine macrophages. International journal of antimicrobial agents. 2013;41(4):358-62.