Presenting a model of data-driven intelligent human resources management with a comparative approach in the free and public universities of Isfahan province
Subject Areas :mostafa toghiyani pozveh 1 , محمدرضا دلوی 2 * , Seyed Rasool Aghadavood 3
1 - دانشجوی دکتری گروه مدیریت، واحد دهاقان، دانشگاه آزاد اسلامی، دهاقان، ایران
2 - عضو هیان علمی دانشگاه دهاقان
3 - management department
Keywords: Human resource management , Data-Driven intelligent management , Azad universities, , public universities,
Abstract :
This research has been prepared with the aim of presenting a data-oriented intelligent human resources management model with a comparative approach in the open and public universities of Isfahan province. The statistical population of the research includes specialists and experts in the field of human resources in the qualitative part and managers, planners and experts in this field in the quantitative part. In the qualitative part, the sample was made using the stratified random method and through the available sample of 12 people. In the quantitative part, the results were analyzed using the simple random sampling method with a volume of 182 people.In order to analyze the information, in the qualitative part, using the Brody approach while comparing the dimensions of the subject in the existing studies, in order to identify and categorize the factors from the two approaches of reviewing the articles using the meta-combination approach and combining the desired results with interviews with experts. was used After that, validity was calculated and confirmed through Lauche coefficient and reliability through kappa. In the quantitative section, confirmatory factor analysis was used to examine the results in the research field. The analyzes were done using smartPLS and SPSS version 26 software.Data validity was calculated through face value and reliability through Cronbach's alpha(0.88).The findings have shown that there are 22 common components between data-driven human resource management between public and private universities
منابع - ادیب زاده مریم, رکن آبادی حسین مهدی. (1402). شناسایی و اولویت بندی عوامل موثر برنگهداشت منابع انسانی دانشگاه آزاد اسلامی (مورد مطالعه واحد تهران شمال).
- اميري حسن, ميرسپاسي ناصر, رهنماي رودپشتي فريدون (1396). طراحي الگوي حسابداري منابع انساني در دانشگاه آزاد اسلامي.فصلنامه علمی پژوهشی دانش حسابداری و حسابرسی مدیریت، سال ششم، شماره 21، 19-32. - برخه, & جمالی. (1397). بررسی تاثیر منابع انسانی استراتژیک بر بهبود عملکرد مالی در دانشگاه دولتی یاسوج. مطالعات اقتصاد، مدیریت مالی و حسابداری, 21(4), 318-332.
- پناهی, مهریه, گودرزی, محمود, جلالی فراهانی, علی دوست قهفرخی, ابراهیم. (1401). شناسایی ابعاد شتابگیری دانشکدههای تربیت بدنی دانشگاههای دولتی به سوی دانشگاه های نسل چهار. مدیریت و توسعه ورزش, 11(2), 75-97. - رشیدی, امیرنژاد, قنبر, دانشفرد, کرم الله. (1399). طراحی الگوی منابع انسانی سبز با تأکید بر بهداشت و سلامت در دانشگاه آزاد اسلامی. مجله دانشکده پزشکی دانشگاه علوم پزشکی مشهد, 63(5).
- سلیمیان, معصومعلی, عزیزی, بشرویه, زاهدکار. (1399). بررسی تأثیر اقدامات مدیریت منابع انسانی بر عملکرد سازمانی (مورد مطالعه: دانشگاه آزاد اسلامی واحد آستارا). نوآوری های مدیریت آموزشی, 15(2), 21-35.
- سیدعلوی, سیدمحمد, قلاوندی, عباسپورفردطهرانی, محمدخانی, & کامران. (1399). ارائه الگویی برای به کارگیری مدیریت سبز در دانشگاههای دولتی شهر تهران. پژوهش و برنامه ریزی در آموزش عالی, 97(26), 77-96.
- قبادی الوار, احمد, موسوی, سید نجم الدین, شریعت نژاد. (1397). تحلیل و ارزیابی ریسک های منابع انسانی در نظام آموزش عالی؛ مورد: دانشگاه آزاد اسلامی لرستان. پژوهش و برنامه ریزی در آموزش عالی, 24(3), 107-129.
- کعبى پور, اشرف گنجویی, & زارعی. (1400). بهبود سامانة مدیریت اطلاعات منابع انسانی و فیزیکی ورزش دانشگاه آزاد اسلامی. نشریه مدیریت ورزشی.
- مهدیبیگی, نجمه, کمالیان, امینرضا, یعقوبی, نورمحمد, ... و رونقی. (1398). توسعه ظرفیت اصلاح نظام اداری در پرتو سازمان هوشمند با رویکرد دادهبنیاد. پژوهش های مدیریت منابع سازمانی, 35(9), 111-132.
- مهدیزاده, سلطانی, ایرج, دوازدهامامی. (1399). عوامل موثر بر معماری منابع انسانی در دانشگاه آزاد اسلامی استان فارس. رهیافتی نو در مدیریت آموزشی, 43(11), 373-398.
- Budhwar, P., Chowdhury, S., Wood, G., Aguinis, H., Bamber, G. J., Beltran, J. R., ... & Varma, A. (2023). Human resource management in the age of generative artificial intelligence: Perspectives and research directions on ChatGPT. Human Resource Management Journal, 33(3), 606-659.
- Combs, J., Liu, Y., Hall, A., & Ketchen, D. (2006). How much do high‐performance work practices matter? A meta‐analysis of their effects on organizational performance. Personnel psychology, 59(3), 501-528.
- Conte, F., & Siano, A. (2023). Data-driven human resource and data-driven talent management in internal and recruitment communication strategies: an empirical survey on Italian firms and insights for European context. Corporate Communications: An International Journal, 28(4), 618-637.
- Crook, T. R., Todd, S. Y., Combs, J. G., Woehr, D. J., & Ketchen Jr, D. J. (2011). Does human capital matter? A meta-analysis of the relationship between human capital and firm performance. Journal of applied psychology, 96(3), 443.
- Di Vaio, A., Hassan, R., & Alavoine, C. (2022). Data intelligence and analytics: A bibliometric analysis of human–Artificial intelligence in public sector decision-making effectiveness. Technological Forecasting and Social Change, 174, 121201.
- Garg, S., Sinha, S., Kar, A. K., & Mani, M. (2022). A review of machine learning applications in human resource management. International Journal of Productivity and Performance Management, 71(5), 1590-1610.
- Guan, C., Mou, J., & Jiang, Z. (2020). Artificial intelligence innovation in education: A twenty-year data-driven historical analysis. International Journal of Innovation Studies, 4(4), 134-147.
- Huselid, M. A. (1995). The impact of human resource management practices on turnover, productivity, and corporate financial performance. Academy of management journal, 38(3), 635-672.
- Huselid, M. A., & Becker, B. E. (2011). Bridging micro and macro domains: Workforce differentiation and strategic human resource management. Journal of management, 37(2), 421-428.
- Jiang, K., Lepak, D. P., Hu, J., & Baer, J. C. (2012). How does human resource management influence organizational outcomes? A meta-analytic investigation of mediating mechanisms. Academy of management Journal, 55(6), 1264-1294.
- Kaufman, C., Hoffman, P., Nir, Y., Eronen, P., & Kivinen, T. (2014). Internet key exchange protocol version 2 (IKEv2) (No. rfc7296).
- Khang, A., Gupta, S. K., Dixit, C. K., & Somani, P. (2023). Data-driven application of human capital management databases, big data, and data mining. In Designing Workforce Management Systems for Industry 4.0 (pp. 105-120). CRC Press.
- Lăzăroiu, G., & Harrison, A. (2021). Internet of things sensing infrastructures and data-driven planning technologies in smart sustainable city governance and management. Geopolitics, History & International Relations, 13(2).
- Liu, J., Wang, T., Li, J., Huang, J., Yao, F., & He, R. (2019, October). A data-driven analysis of employee promotion: the role of the position of organization. In 2019 IEEE international conference on systems, man and cybernetics (SMC) (pp. 4056-4062). IEEE.
- Li, X., Wang, Z., Chen, C. H., & Zheng, P. (2021). A data-driven reversible framework for achieving Sustainable Smart product-service systems. Journal of Cleaner Production, 279, 123618.
- Minbaeva, D. (2021). Disrupted HR?. Human Resource Management Review, 31(4), 100820.
- Opatha, H. H. D. P. J. (2021). HR analytics: A critical review-developing a model towards the question can organizations solely depend on HR big data driven conclusions in making HR strategic decisions all the time. Human Resource Management Research.
- Oswald, F. L., Behrend, T. S., Putka, D. J., & Sinar, E. (2020). Big data in industrial-organizational psychology and human resource management: Forward progress for organizational research and practice. Annual Review of Organizational Psychology and Organizational Behavior, 7, 505-533.
- Paauwe, J. (2004). HRM and performance: Achieving long-term viability. Oxford University Press, USA.
- Paauwe, J., & Farndale, E. (2017). Strategy, HRM, and performance: A contextual approach. Oxford University Press.
- Polyakova, A., Kolmakov, V., & Pokamestov, I. (2020). Data-driven HR Analytics in a Quality Management System. Quality-Access to Success, 21(176).
- Rane, N. (2023). Role and Challenges of ChatGPT and Similar Generative Artificial Intelligence in Human Resource Management. Available at SSRN 4603230.
- Rousseau, D. M. (2006). Is there such a thing as “evidence-based management”?. Academy of management review, 31(2), 256-269.
- Seebacher, U. (2021). Predictive intelligence for data-driven managers. Springer International Publishing.
- Sarker, I. H. (2021). Data science and analytics: an overview from data-driven smart computing, decision-making and applications perspective. SN Computer Science, 2(5), 377.
- Sarker, I. H. (2022). Smart City Data Science: Towards data-driven smart cities with open research issues. Internet of Things, 19, 100528.
- Shet, S. V., Poddar, T., Samuel, F. W., & Dwivedi, Y. K. (2021). Examining the determinants of successful adoption of data analytics in human resource management–A framework for implications. Journal of Business Research, 131, 311-326.
- Van De Voorde, K., Paauwe, J., & Van Veldhoven, M. (2010). Predicting business unit performance using employee surveys: monitoring HRM‐related changes. Human resource management journal, 20(1), 44-63.
- Van De Voorde, K., Paauwe, J., & Van Veldhoven, M. (2012). Employee well‐being and the HRM–organizational performance relationship: a review of quantitative studies. International Journal of Management Reviews, 14(4), 391-407.
- van Veldhoven, M. (2005). Financial performance and the long‐term link with HR practices, work climate and job stress. Human Resource Management Journal, 15(4), 30-53.
- Van Veldhoven, M. J. P. M. (2012). Over knipogen, badkuipen en kampeertenten: Arbeidsgedrag als fundament van strategisch human resource management. Prismaprint.
- Varsha, P. S., & Shree, S. N. (2023). Embracing Data-Driven Analytics (DDA) in human resource management to measure the organization performance. Handbook of Big Data Research Methods: 0, 195. - van der Laken, P. A. (2018). Data-Driven Human Resource Management. The rise of people analytics and its application to.
- Visvizi, A., Troisi, O., Grimaldi, M., & Loia, F. (2022). Think human, act digital: activating data-driven orientation in innovative start-ups. European Journal of Innovation Management, 25(6), 452-478.
- Wang, Y., Wang, S., Yang, B., Zhu, L., & Liu, F. (2020). Big data driven Hierarchical Digital Twin Predictive Remanufacturing paradigm: Architecture, control mechanism, application scenario and benefits. Journal of cleaner production, 248, 119299.
- Welbourne, T. M. (2015). Data‐Driven Storytelling: The Missing Link in HR Data Analytics. Employment Relations Today, 41(4), 27-33.
- Wright, P. M., Gardner, T. M., Moynihan, L. M., & Allen, M. R. (2005). The relationship between HR practices and firm performance: Examining causal order. Personnel psychology, 58(2), 409-446.
- Wu, D., Wang, H., & Seidu, R. (2020). Smart data driven quality prediction for urban water source management. Future Generation Computer Systems, 107, 418-432.
- Yusof, R., Azizan, S., Zainal, S. R. M., & Supian, K. (2022). The Essential Role of Human Values and Technology Driven HRM Towards a Smart HRM Process. Global Business and Management Research, 14(3s), 256-265.
- Zhang, Y., Xu, S., Zhang, L., & Yang, M. (2021). Big data and human resource management research: An integrative review and new directions for future research. Journal of Business Research, 133, 34-50.
- Zehir, C., Karaboğa, T., & Başar, D. (2020). The transformation of human resource management and its impact on overall business performance: big data analytics and AI technologies in strategic HRM. Digital Business Strategies in Blockchain Ecosystems: Transformational Design and Future of Global Business, 265-279.