On the results of proving the equivalence of $\mathcal{T}$-contractive mappings
Subject Areas : Operator theory
1 - Department of Mathematics, Faculty of Basic Sciences, Ilam University, Ilam, Iran
Keywords: $\mathcal{T}$-contraction, fixed point, $w$-distance, cone metric space, $\mathfrak{c}$-distance, partial order,
Abstract :
The main goal of this paper is to compare the proof of the existence and uniqueness of fixed points for $\mathcal{T}$-contractive mappings in various metric spaces and different distances regarding some techniques in mathematical analysis. Also, several comparisons to show the efficiency of the obtained result will be considered.
[1] M. Abbas, V. Parvaneh, A. Razani, Periodic points of T-Ciric generalized contraction mappings in ordered metric spaces, Georgian Math. J. 19 (2012), 597-610.
[2] M. Abbas, B. E. Rhoades, Fixed and periodic point results in cone metric spaces, Appl. Math. Lett. 22 (4) (2009), 511-515.
[3] H. Aydi, E. Karapınar, B. Samet, Remarks on some recent fixed point theorems, Fixed Point Theory Appl. (2012), 2012:76.
[4] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math. 3 (1922), 133-181.
[5] A. Beiranvand, S. Moradi, M. Omid, H. Pazandeh, Two fixed-point theorems for special mappings, arXiv: 0903.1504.
[6] T. Bekeshie, G. A. Naidu, Recent fixed point theorems for T-contrative mappings and T-weak contractions in metric and one metric spaces are not real generalization, JNAO. 4 (2) (2013), 219-225.
[7] K. P. Chi, On a fixed point theorem for certain class of maps satisfying a contractive condition depended on an another function, Lobachevskii J. Math. 30 (4) (2009), 289-291.
[8] L. B. Ciric, A certain class of maps and fixed point theorem, Publ. Inst. Math. 20 (34) (1976), 73-78.
[9] Y. J. Cho, R. Saadati, S. H. Wang, Common fixed point theorems on generalized distance in ordered cone metric spaces, Comput. Math. Appl. 61 (2011), 1254-1260.
[10] Z. Fadail, A. Bin Ahmad, Fixed point theorems of T-contraction mappings under c-distance in cone metric spaces, AIP Conf. Proc. 1571 (2013), 1030-1034.
[11] M. Filipovic, L. Paunovic, S. Radenovic, M. Rajovic, Remarks on “Cone metric spaces and fixed point theorems of T-Kannan and T-Chatterjea contractive mappings”, Math. Comput. Modelling. 54 (2011), 1467-1472.
[12] L. G. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 332 (2007), 1467-1475.
[13] J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc. 136 (2008), 1359-1373.
[14] O. Kada, T. Suzuki and W. Takahashi, Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Math. Japon. 44 (1996), 381-391.
[15] J. R. Morales, E. M. Rojas, Cone metric spaces and fixed point theorems of T-contrative mappings, Revista Notas de Matemtica. 4 (2) (2008), 66-78.
[16] J. R. Morales, E. M. Rojas, On the existence of fixed points for contraction mappings depending on two functions, Bull. Iran. Math. Soc. 40 (3) (2014), 689-698.
[17] R. Pal, A. K. Dubey, M. D. Pandey, Fixed point theorems for T-contractions with c-distance on cone metric spaces, J. Inform.. Math. Sci. 11 (3-4) (2019), 265-272.
[18] H. Rahimi, B. E. Rhoades, S. Radenovi´ c, G. Soleimani Rad, Fixed and periodic point theorems for T-contractions on cone metric spaces, Filomat. 27 (5) (2013), 881-888.
[19] H. Rahimi, G. Soleimani Rad, Fixed point theory in various spaces, Lambert Academic Publishing, Germany, 2013.
[20] A. C. M. Ran, M. C. B. Reurings, A fixed point theorem in partially ordered sets and some application to matrix equations, Proc. Amer. Math. Soc. 132 (2004), 1435-1443.
[21] B. E. Rhoades, A comparison of various definition of contractive mappings, Trans. Amer. Math. Soc. 266 (1977), 257-290.
[22] W. Sintunavarat, Y. J. Cho, P. Kumam, Common fixed point theorems for c-distance in ordered cone metric spaces, Comput. Math. Appl. 62 (2011), 1969-1978.
[23] F. Yousefi, H. Rahimi, G. Soleimani Rad, A discussion on fixed point theorems of Ciric and Fisher on w-distance, J. Nonlinear Convex Anal. 23 (2022), 1409-1418.