Fixed points of \'{C}iri\'{c} and Caristi-type multivalued contractions
Subject Areas : Fixed point theoryS Yahaya 1 * , M. S. Shagari 2 , A. T. Imam 3
1 - Department of Mathematics and Statistics, American University of Nigeria, PMB 2250, Yola, Nigeria
2 - Department of Mathematics, Faculty of Physical Sciences, Ahmadu Bello University, Zaria, Nigeria
3 - Department of Mathematics, Faculty of Physical Sciences, Ahmadu Bello University, Zaria, Nigeria
Keywords: Fixed point, Caristi contraction, multivalued mapping, metric space, \'{C}iri\'{c} contraction,
Abstract :
The aim of this paper is to introduce the concept of multi-valued contraction that combine a renowned \'{C}iri\'{c}-type contraction and Caristi-type contractions in the framework of metric spaces. The existence of fixed points for such contractions equipped with some suitable hypotheses are proved and some analogues of the fixed point theorems presented herein are deduced as corollaries. Moreover, an example is given to illustrate the validity of obtained main result.
[1] M. Abbas, V. C. Rajic, T. Nazir, S. Radenovic, Common fixed point of mappings satisfying rational inequalities in ordered complex valued generalized metric spaces, Afri. Math. 26 (2015), 17-30.
[2] I. Altun, G. Durmaz, M. Olgun, P-contractive mappings on metric spaces, J. Nonl. Func. Anal. (2018), 2018:43.
[3] M. Arshad, E. Karapinar, J. Ahmad, Some unique fixed point theorems for rational contractions in partially ordered metric spaces, J. Ineq. Appl. (2013), 2013:248.
[4] I. Cabrera, J. Harjani, K. Sadarangani, A fixed point theorem for contractions of rational type in partially ordered metric spaces, Annali. Dell. Univ. Di Ferrara. 59 (2013), 251-258.
[5] J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc. 215 (1976), 241-251.
[6] S. Chandok, B. S. Choudhury, N. Metiya, Fixed point results in ordered metric spaces for rational type expressions with auxiliary functions, J. Egypt. Math. Soc. 23 (1) (2015), 95-101.
[7] C. M. Chen, Gh. Heidary Joonaghany, E. Karapinar, F. Khojasteh, On bilateral contractions, Mathematics. 7 (2019), 6:538.
[8] Z. Cheng, The generalization of Ciric and Caristi type fixed point theorem, Wuhan Univ. J. Nat. Sci. 28 (1) (2023), 011-014.
[9] B. S. Choudhury, N. Metiya, C. Bandyopadhyay, P. Maity, Fixed points of multivalued mappings satisfying hybrid rational Pata-type inequalities, The Journal of Analysis. 27 (2019), 813-828.
[10] B. S. Choudhury, N. Metiya, T. Som, C. Bandyopadhyay, Multivalued fixed point results and stability of fixed point sets in metric spaces, Facta Univ. Ser. Math. Info. 30 (2015), 501-512.
[11] L. B. Ciric, A generalization of Banach contraction principle, Proc. Am. Math. Soc. 45 (1974), 267-273.
[12] B. K. Dass, S. Gupta, An extension of Banach contraction principle through rational expression, Indian J. Pure Appl. Math. 6 (12) (1975), 1455-1458.
[13] W. S. Du, E. Karapinar, A note on Caristi-type cyclic maps: Related results and applications, J. Fixed Point Theory Appl. (2013), 2013:344.
[14] D. S. Jaggi, Some unique fixed point theorems, Indian J. Pure Appl. Math. 8 (2) (1977), 223-230.
[15] E. Karapinar, F. Khojasteh, W. Shatanawi, Revisiting´Ciri´ c type contraction with Caristi approach, Symmetry. 11 (2019), 6:726.
[16] S. B. Nadler, Multi-valued contraction mappings, Paci. J. Math. 30 (2) (1969), 475-488.