Operator frame for $End_{\mathcal{A}}^{\ast}(\mathcal{H})$
Subject Areas : Functional analysis
1 - Department of Mathematics, University of Ibn Tofail, B.P. 133, Kenitra, Morocco
2 - Department of Mathematics, University of Ibn Tofail, B.P. 133, Kenitra, Morocco
Keywords: Frame, operator frame, $C^{ast}$-algebra, Hilbert $mathcal{A}$-modules,
Abstract :
Frames generalize orthonormal bases and allow representation of all the elements of the space. Frames play significant role in signal and image processing, which leads to many applications in informatics, engineering, medicine, and probability. In this paper, we introduce the concepts of operator frame for the space $End_{\mathcal{A}}^{\ast}(\mathcal{H})$ of all adjointable operators on a Hilbert $\mathcal{A}$-module $\mathcal{H}$ and establish some results.
[1] A. Alijani, M. A. Dehghan, ∗-frames in Hilbert C∗-modules, U.P.B. Sci. Bull. (Ser. A). 73 (4) (2011), 89-106.
[2] Lj. Arambaic, On frames for countably generated Hilbert C∗-modules, Proc. Amer. Math. Soc. 135 (2007), 469-478.
[3] O. Christensen, An Introduction to Frames and Riesz Bases, Brikhauser, 2016.
[4] J. B. Conway, A Course in Operator Theory, American Mathematical Society, 2000.
[5] F. R. Davidson, C∗-algebra by example, Fields Ins. Monog. 1996.
[6] R. J. Duffin, A. C. Schaeffer, A class of nonharmonic fourier series, Trans. Amer. Math. Soc. 72 (1952), 341-366.
[7] I. Kaplansky, Modules over operator algebras, Amer. J. Math. 75 (1953), 839-858.
[8] A. Khosravi, B. Khosravi, Frames and bases in tensor products of Hilbert spaces and Hilbert C∗-modules, Proc. Indian Acad. Sci. Math. Sci. 117 (2007), 1-12.
[9] A. Khosravi, B. Khosravi, Fusion frames and g-frames in Hilbert C∗-modules, Int. J. Wavelets Multiresolut. Inf. Process. 6 (2008), 433-446.
[10] E. C. Lance, Hilbert C∗-modules: A Toolkit for Operator Algebraists, London Math. Soc. Lecture Series, 1995.
[11] C. Y. Li, H. X. Cao, Operator Frames for B(H), Wavelet Analysis and Applications, Applications of Numerical Harmonic Analysis, Springer, 2006.
[12] W. Paschke, Inner product modules over B *-algebra, 2 (1973), 443-468.