Assessment of Sunlight Quality and Duration in Traditional Houses of Hamedan, Iran
Subject Areas :
1 - Department of Architecture, Heris Branch, Islamic Azad University, Heris, Iran
Keywords: Sunlight Hours, Daylight, Transparent Surfaces, Traditional Houses, Hamedan, Design Pattern,
Abstract :
Introduction: Daylight plays an essential role in human perception, and various studies consistently support its positive effects on our overall well-being, encompassing physical health, mental satisfaction, and productivity. In Iran, with its wealth of sunlight and remarkable architectural legacy, attention to light and lighting has always been a paramount aspect of traditional architecture. This research aims to shed light on the impact of sunlight hours and light transmission within traditional buildings in Hamedan, located in Iran's cold climate region, by addressing the following questions: 1) Are the solar hours within the spaces of local buildings in Hamedan sufficient throughout the year? 2) Is there a discernible relationship between the components of light-transmitting surfaces and spaces that achieve the optimal amount of solar hours? By addressing these questions, this research endeavors to uncover valuable insights into the importance of daylight in Hamedan's traditional houses, enriching our understanding and appreciation of Iranian architectural heritage. Methodology: In total, the physical elements of 33 rooms and 9 yards were collected and analyzed in this research. Using the obtained information, the volume drawing of the buildings was done in AutoCAD and 3dMax software. The Ladybug plugin in the Grasshopper and Rhino software, which utilizes advanced daylight analysis engines, was employed to determine the percentage of shading in the yard throughout the year. Ecotect software was also used to analyze the brightness of daylight and the number of sunlight hours on the windows of selected spaces. In this research, to reach a more suitable answer, in addition to the regulations and standards of Iran, the regulations related to daylight and the number of sunlight hours in 11 other countries with cold climate regions were also examined. Optimal spaces in terms of daylight were identified in four main sections: 1) amount of brightness, 2) uniformity of daylight, 3) amount of sun hours, and 4) visibility to the outside, and they were graded and identified. Results: Analyzing information from the selected rooms using relevant software and daylighting standards, it was found that among the 33 examined rooms, 7 did not meet the minimum requirements for quality daylight and the required number of sunny hours, while the remaining 26 rooms met the standards for proper daylight quality. Upon analyzing the 26 rooms studied within the historical monuments of Hamedan city with minimum daylight quality, it was observed that 18 rooms face south, 4 face north, 2 face east, and 2 face west. All rooms, except for the 2 east-facing rooms, have the potential to receive direct sunlight and meet the minimum sunlight hour requirement. By utilizing correlation graphs between space elements, a linear relationship between space elements, daylight quality, and appropriate sunlight hour exposure was determined. The identified relationships exhibited a high correlation coefficient, and a correlation equation was introduced to describe the relationship between these elements. Conclusion: By examining the physical elements in all 26 selected rooms with sufficient daylight in Hamedan houses, the suggested design patterns with the highest value were identified. These suggested patterns act as effective solutions for room and window design in buildings located in Hamedan and other regions with similar cold and dry climates in Iran.
• احدی، امین اله، مسعودی نژاد، مصطفی و پیریایی، آرمین. (1395). طراحی صحیح پنجره¬ها بهمنظور دستیابی به میزان نور روز مناسب در خانه¬های آپارتمانی شهر تهران. هویت شهر. 10(25): 41-50.
• بمانیان، محمدرضا، و نیکودل، فهیمه. (1393). بررسی انواع نورگیری و روشهای تأمین نور در مساجد دوره قاجار تهران. پژوهشهای معماری اسلامی، 1(3): 60-74.
• پارسا، محمدعلی. (1391). پنجره در معماری ایران، نگاهی تحلیلی به گونه¬های پنجره در خانه¬های سنتی ایران. پایان¬نامه دکترای معماری، دانشگاه شهيد بهشتي.
• پور دیهیمی، شهرام و حاجي سید جوادی، فريبرز . (1387). تأثیر نور روز بر انسان - فرایند ادراکی و زیست¬شناسی¬ روانی روشنایی روز. دوفصلنامه صفه. 17(46): 67-75.
• حاجی¬زاده، ابراهیم و اصغری، محمد. (1390). روشها وتحلیل¬های آماری. تهران: جهاد دانشگاهی.
• حاجي سيد جوادي، فريبرز. (1386). نور روز و كيفيت فضاهاي آموزشي. رساله دکتری معماری. دانشکده معماری و شهرسازی، دانشگاه شهید بهشتی.
• حق¬شناس، محمد، و قیابکلو، زهرا. (1387). بررسی تأثیر شیشه¬های رنگی بر میزان نور و انرژی عبوری در محدوده مرئی. علوم و فناوری رنگ، 2(4)، 213-220.
• سایت مرکز ملی آمار ایران. (1398). درگاه ملی آمار. www.amar.org.ir
• صالحی¬پور، علی، اعتصام، ایرج و مفیدی شمیرانی، سید مجید. (1399). دوفصلنامه اندیشه معماری. 4(8): 202-220. DOI: 10.30479/at.2020.11149.1259
• طاهباز، منصوره. (1383). قاب هرم/ شیدی پنجره، (تأثير همزمان نور و گرماي خورشيد در طراحي پنجره). رساله دکتری معماری. دانشکده معماری و شهرسازی، دانشگاه شهید بهشتی.
• طاهباز، منصوره و جلیلیان، شهربانو. (1390). اصول طراحی معماری همساز با اقلیم در ایران با رویکرد به معماری مساجد. تهران: دانشگاه شهید بهشتی.
• طاهباز، منصوره، جلیلیان، شهربانو، موسوی، فاطمه، و کاظم¬زاده، مرضیه. (1392). نورپردازی طبیعی در خانه¬های سنتی کاشان نمونه موردی: خانه عامری¬ها. مطالعات معماری ایران، 2(4)، 87-108.
• طاهباز، منصوره، جلیلیان، شهربانو، موسوی، فاطمه، و کاظم¬زاده، مرضیه. (1394). تأثیر طراحی معماری در بازی نور طبیعی در خانه¬های سنتی ایران. معماری و شهرسازی آرمانشهر. - (15): 71-81.
• غیائی، محمدمهدی، مهدوی¬نیا، مجتبی، طاهباز، منصوره، و مفیدی شمیرانی، سید مجید. (1392). روش¬شناسی گزینش نرم¬افزارهای کاربردی شبیه¬ساز انرژی در حوزه معماری. هویت شهر. 7(13): 45-54.
• کاظمزاده، مرضیه، طاهباز، منصوره. (1392). اندازه¬گیری و بررسی شرایط نور روز در خانه¬های قدیمی کرمان. نشریه هنرهای زیبا: معماری و شهرسازی. 18(2): 17-26. DOI: 10.22059/jfaup.2013.50523
• كاوياني، محمدرضا و عليجاني، بهلول. (1382). مباني آبوهواشناسی. تهران: سمت.
• کسمایی، مرتضی. (1382). اقلیم و معماری. اصفهان: نشر خاک.
• کسمایی، مرتضی. (1370). نقشه پهنه¬بندی اقلیمی ایران، تهران: مرکز تحقیقات ساختمان و مسکن وزارت مسکن و شهرسازی.
• مجرد، فيروز و مرادي، كامران. (1393). نگرشي بر ناموزونیها و روندهاي ساعات آفتابي در ايران. جغرافيا و توسعه. 12(34): 153-165.
• مفیدی شمیرانی، سید مجید و پورناصری، شهناز. (1390). مدل¬یابی میزان و نحوه تأثیر متغیرهای کالبدی پنجره بر بهره گیری مناسب از نور روز در کلاسهای مدارس راهنمایی تهران. فناوری آموزش (فناوری و آموزش)، 5(4)، 241-256.
• موسوی، فاطمه، محمودی زرندی، مهناز و طاهباز، منصوره. (1397). تأثیر هندسه و سطح نورگیر پنجره¬هاى اتاق¬هاى زمستان¬نشین بر عمق نفوذ نور روز (مطالعه موردى: خانه¬هاى سنتى یزد). هویت شهر. 12(4): 5-18.
• نایبی، بتول (فرشته)، کاتب، فاطمه، مظاهری، مهرانگیز، و بیرشک، بهروز. (1386). تأثیر نور فضاهای داخلی بر کیفیت زندگی و رفتارهای اخلاقی انسان. اخلاق در علوم و فناوری، 2(4-3)، 65-72.
• Ahadi, Amin, Masoudi Nejad, Mostafa & Piryaei, Armin. (2016). Achieving Appropriate Daylight Quality for Small Apartments in Tehran City by Proper Design of Windows. Hoviatshahr. 10(1): 41-50. (in persian)
• Bemanian, Mohammad Reza & Nikoudel, Fahimeh. (2014). Evaluation of Daylight-catching and Daylight Providing Methods in Mosques. Iran University of Science & Technology. 1(3): 60-74. (in persian)
• DiLouie, Craig. (2002). Lighting & Productivity, (LDL), Daylighting, Better Bricks. Portland: North West Energy Effciency Alliance.
• European Standard. Daylight in buildings. (2018). Ref. No: EN 17037:2018 (E). European Committee For Standardization (CEN).
• Franta, G. & Anstead, K. (1994). Daylighting offers great opportunities. Window & Door Specifier-Design Lab, 40-43.
• Farivar, Shiva & Teimourtash, Shabnam. (2023). Impact of Window Design on Dynamic Daylight Performance in an Office Building in Iran. Journal of Daylighting. 10(1): 31-44. DOI: 10.15627/jd.2023.3
• Ghiyaee, M.Mehdi, Mahdavinia, Mojtaba, Tahbaz, Mansoreh & Mofidi Shemirani, S.Majid. (2013). A Methodology for Selecting Applied Energy Simulation Tools in the Field of Architecture. Hoviatshahr. 7(13): 45-55. (in persian)
• Haghshenas, Mohammad & Ghiabaklou, Zahra. (2009). Investigation of Tinted Glazing’s Effect in Transmission of Daylight and Energy in the Visible Spectrum. Journal of Color Science and Technology. 2(4): 213-220. (in persian)
• Hajiseyed Javadi, Fariborz. (2008). Daylight and quality of educational spaces. The role of open spaces, skylights and indoor spaces in school lighting, in Department of Architecture. Shahid Beheshti University, Iran. (in persian)
• Hajizadeh, Ebrahim & Asgari, Mohammad. (2011). Methods and statistical analysis. Tehran: Jahad Daneshgahi. (in persian)
• Kasmayi, Morteza. (1992). Climate zoning map of Iran. Road, Housing & Urban Development Research Center of the Ministry of Roads and Urban Development in Iran: Tehran. (in persian)
• Kasmayi, Morteza. (2004). Climate and Architecture. Esfahan: Khak. (in persian)
• Kaviani, Mohammad Reza & Alijani, Bohlol. (2003). Basics of meteorology. Tehran: Samt. (in persian)
• Kazemzadeh, Marziyeh & Tahbaz, Mansoreh. (2014). Measurement and analyzing daylight condition in traditional Kerman houses (Aminian house). Honar-ha-ye-Ziba Memari-Va-Shahrsazi. 18(2): 17-26. DOI: 10.22059/jfaup.2013.50523. (in persian)
• L'Annunziata, Michael F. (2023), Radioactivity (Third Edition), Chapter 13 - Electromagnetic Radiation: photons, Elsevier. DOI: 10.1016/B978-0-323-90440-7.00005-3.
• Liberman, Jacob. (2002). Light: Medicine of Future. Rochester, Vermont: Bear & Company.
• Mc Cloud, Kevin. (1995). Lighting Style. New York: Simon & Schuster.
• Miller, Naomi. (1994). Pilot Study Reveals Quality Results. Lighting Design & Applications. 24(3): 19-23.
• Mofidi Shemirani, Seyed Majid & Pournaseri, Shahnaz. (2012). Modelling the Measure and Effect of Window Physical Variables on Daylighting in Tehran Guidance Schools. Education technology Journal. 5(4): 241-256. (in persian)
• Mojarad, Firoz & Moradi, Kamran. (2014). An Overview of Sunrise Anomalies and Trends in Iran. Geography and Development. 12(34): 153–165. (in persian)
• Mousavi, Fatemeh, Mahmodi Zarandi, Mahnaz & Tahbaz, Mansoreh. (2019). The Effect of Geometry and Area of Windows of Southview Rooms on The Depth of Daylighting (Case Study: Yazd’s Traditional Houses). Hoviatshahr. 12(4): 5-18. (in persian)
• Nayebi, Fershteh, Kateb, Fatemeh, Mazaheri, Mehrangiz & Birashk, Behrouz. (2008). The effect of indoor lighting on quality of life and human moral behaviors. Journal of Ethics in Science and Technology. 2(3-4): 65-72. (in persian)
• Parsa, Mohammad Ali. (2013). Windows in Iranian architecture, an analytical look at the types of windows in traditional Iranian houses, in Department of Architecture. Shahid Beheshti University, Iran. (in persian)
• Pourdeihimi, Shahram & Hajiseyed Javadi, Fariborz. (2008). Daylight and the human being: perception and biopsychology of daylight. Soffeh. 17(46): 67-75. (in persian)
• Salehipour, Ali, Etessam, Iraj & Mofidi Shemirani, S.Majid. (2020). Recognition of outdoor courtyard structure and its interaction with clear walls in historic houses of Ardabil. Journal of Architectural Thought. 4(8): 202-220. DOI: 10.30479/at.2020.11149.1259. (in persian)
• Salehipour, Ali, Etessam, Iraj & Mofidi Shemirani, S. Majid. (2021). Recognition of the Quality of Sunlight Hours in Traditional Houses of Tabriz, Iran. Journal of Solar Energy Research. 6(2): 696-712. DOI: 10.22059/jser.2021.319700.1191.
• Soflaei, Farzaneh, Shokouhian, Mohammad & Mofidi Shemirani, S. Majid. (2015). Investigation of Iranian traditional courtyard as passive cooling strategy (a field study on BS climate). International Journal of Sustainable Built Environment. 5: 99–113. DOI: 10.1016/j.ijsbe.2015.12.001
• Soflaei, Farzaneh, Shokouhian, Mohammad & Mofidi Shemirani, S. Majid. (2016). Traditional Iranian courtyards as microclimate modifiers byconsideringorientation, dimensions, and proportions. Frontiers of Architectural Research. 5: 225-238. DOI: 10.1016/j.foar.2016.02.002
• Soflaei, Farzaneh, Shokouhian, Mohammad & Soflaei, Amir. (2017). Traditional courtyard houses as a model for sustainable design: A case study on BWhs mesoclimate of Iran. Frontiers of Architectural Research. 6: 329–345. DOI: 10.1016/j.foar.2017.04.004
• Statistical center of Iran. (2020). Presidency of the I.R.Iran, Plan and Budget Organization; Available from: www.amar.org.ir. (in persian)
• Tahbaz, Mansoreh. (2005). Warmth-Light Mask of Window, in Department of Architecture. Shahid Beheshti University, Iran. (in persian)
• Tahbaz, Mansoreh & Jalilian, Shahrbano. (2012). Principles of climate-friendly architecture design in Iran with an approach to mosque architecture. Tehran: Shahid Beheshti University. (in persian)
• Tahbaz, Mansoreh, Jalilian, Shahrbano & Mosavi, Fatemeh. (2013). “Door-Window” Daylighting Evaluation in Traditional Houses of Iran, in International Scientific Conference (CISBAT 2013). Lausanne, Switzerland.
• Tahbaz, Mansoreh, Jalilian, Shahrbano, Mosavi, Fatemeh & Kazemzadeh, Marzieh. (2014). Natural Day lighting in Traditional Houses in Kashan, Case Study of Ameri House. JIAS. 2(4): 87-108. (in persian)
• Tahbaz, Mansoreh, Jalilian, Shahrbano, Mosavi, Fatemeh & Kazemzadeh, Marzieh. (2016). Effects of Architectural Design on Daylight Fantasy in Iranian Traditional Houses. Armanshahr Architecture & Urban Development. 8(15): 71-81. (in persian)
• Tahbaz, Mansoreh & Moosavi, Fatemeh. (2009). Daylighting Methods in Iranian Traditional Architecture (Green Lighting), in International Scientific Conference (CISBAT 2009). Lausanne, Switzerland.
• Tamaskani Esfehankalateh, Atefeh, Farrokhzad, Mohammad, Tamaskani Esfehankalateh, Faezeh & Soflaei, Farzaneh. (2022). Bioclimatic passive design strategies of traditional houses in cold climate regions. Environ Dev Sustain. 24: 10027–10068. DOI: 10.1007/s10668-021-01855-6
• Talaei, Maryam & Sangin, Hamed. (2024). Multi-objective optimization of energy and daylight performance for school envelopes in desert, semi-arid, and mediterranean climates of Iran. Building and Environment. 255: 111424. DOI: doi.org/10.1016/j.buildenv.2024.111424
• Yin, X. (1999). Bright sunshine duration in relation to precipitation, air temperature and geographic location. Theoretical and applied climatology. 64(1-2): 61-68.