Synchronization of Delayed Fractional Order Chaotic Systems Based on Controller with Non-Linear Fractional Order PID Structure
Subject Areas : Fractional order systemsMohammad Rasouli 1 , Assef Zare 2 * , Majid Hallaji 3
1 - Faculty of Electrical Engineering- Gonabad Branch, Islamic Azad University, Gonabad, Iran
2 - Research Center of Intelligent Technologies in Electrical Industry- Gonabad Branch, Islamic Azad University, Gonabad, Iran
3 - Faculty of Electrical Engineering- Neyshabure Branch, Islamic Azad University, Neyshabure, Iran
Keywords: fractional order chaotic synchronization, sliding mode control, uncertainty, unknown time delay,
Abstract :
In this paper, a new control approach for robust synchronization of chaotic systems with uncertainty, unknown parameters such as indefinite time delay and external disturbances is presented. Uncertain time delay as an important factor that increases the complexity of the control problem and overcoming it is stated in this article. By using the structure of nonlinear proportional-integral-derivative controllers of fractional order, a sliding surface of fractional order has been introduced to design the control strategy of the said sliding mode. Then, using Lyapunov's theory, robust adaptive rules are designed in such a way that the estimation error of the unknown parameters of the fractional order system with an indefinite time delay tends to zero by the proposed control mechanism. Also, by using Lyapunov stability standard the stability analysis of the proposed robust control approach has been proved. Finally, the performance evaluation of the proposed mechanism, the synchronization of two Jerk chaotic systems with uncertainty along an indefinite time delay and disturbance, has been simulated by the presented control approach, the results of which show the robust and favorable performance of the simulation.
[1] E.N. Lorenz, "Deterministic nonperiodic flow", Journal of Atmospheric Sciences, vol. 20, no. 2, pp. 130-141, March. 1963 (doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2)
[2] G. Chen, T. Ueta, "Yet another chaotic attractor", International Journal of Bifurcation and Chaos, vol. 9, no. 7, pp. 1465-1466, 1999 (doi: 10.1142/S0218127499001024).
[3] J. LÜ, G. Chen, "A new chaotic attractor coined", International Journal of Bifurcation and chaos, vol. 12, no. 03, pp. 659-661, Jan. 2002 (doi: 10.1142/s0218127402004620)
[4] C. Liu, T. Liu, L. Liu, K. Liu, "A new chaotic attractor chaos", Solitons and Fractals, vol. 22, no. 5, pp. 1031-1038, Dec. 2004 (doi: 10.1016/j.chaos.2004.02.060).
[5] F. Arran, B. Dumitru, H.M. Srivastava, "Series representations for fractional-calculus operators involving generalised Mittag-Leffler functions", Communications in Nonlinear Science and Numerical Simulation, vol. 67, pp. 517-527, Feb. 2019 (doi: 10.1016/j.cnsns.2018.07.035).
[6] J. Zhang, F. Goo, Y. Chen, Y. Zou, "Parameter identification of fractional-order chaotic system based on chemical reaction optimization", Proceedings of ICMSS, pp. 217-222, Wuhan China, Jan. 2018 (doi: 10.11¬45/318¬0374.3181323).
[7] C. Ionescu, A. Lopes, D. Copot, J.A.T. Machado, J.H. Bates, "The role of fractional calculus in modeling biological phenomena: A review", Communications in Nonlinear Science and Numerical Simulation, vol. 51, pp. 141-159, Oct. 2017 (doi: 10.1016/j.cnsns.2017.04.001).
[8] J.D. Morcillo, D. Burbano, F. Angulo, "Adaptive ramp technique for controlling chaos and subharmonic oscillations in dc–dc power converters", IEEE Trans. on Power Electronics, vol. 31, no. 7, pp. 5330-5343, July 2016 (doi: 10.1109/TPEL.2015.2487269).
[9] R. Caponetto, F. Matera, E. Murgano, E. Privitera, M.G. Xibilia, ''Fuel cell fractional-order model via electrochemical impedance spectroscopy'', Fractal and Fractional, pp. 1-21, vol. 5, no. 1, Mar. 2021 (doi: 10.3390/fractalfract5010021).
[10] R.G. Li, H.N. Wu, "Secure communication on fractional-order chaotic systems via adaptive sliding mode control with teaching–learning–feedback-based optimization", Nonlinear Dynamics, vol. 95, no. 2, pp. 1221-1243, Nov. 2018 (doi: 10.1007/s11071-018-4625-z).
[11] Y. Lu, M. Gong, L. Cao, Z. Gan, X. Chai, A. Li, "Exploiting 3D fractal cube and chaos for effective multi-image compression and encryption", Journal of King Saud University - Computer and Information Sciences, vol. 35, no. 3, pp. 37-58, March 2023 (doi: 10.1016/j.jksuci.2023.02.004).
[12] F.B.M. Duarte, J.A.T. Machado, "Chaotic phenomena and fractional-order dynamics in the trajectory control of redundant manipulators", Nonlinear Dynamics, vol. 29, no. 1, pp. 315-342, July 2002 (doi: 10.1023/A:1016559314798).
[13] I. Petráš, "Fractional-order nonlinear controllers: Design and implementation notes", Proceeding of the IEEE/ICCC, pp. 579-583, Slovakia, June 2016 (doi: 10.1109/CarpathianCC.2016.7501163).
[14] S.Z. Mirrezapour, A. Zare. M. Hallaji, "A new fractional sliding mode controller based on nonlinear fractional-order proportional integral derivative controller structure to synchronize fractional-order chaotic systems with uncertainty and disturbances", Journal of Vibration and Control, vol. 28, pp. 773-785, Jan. 2021 (doi: 10.1177/1077546320982453).
[15] A. Zare, S.Z. Mirrezapour, M. Hallaji, A. Shoeibi, M. Jafari, N. Ghassemi, R. Alizadehsani, A. Mosavi, "Robust adaptive synchronization of a class of uncertain chaotic systems with unknown time-delay", Applied Sciences, vol. 10, no. 24, Article Number: 8875, Dec. 2020 (doi: 10.3390/app10248875).
[16] S. Mohammadpour, T. Binazadeh, "Robust observer-based synchronization of unified chaotic systems in the presence of dead-zone nonlinearity input, Journal of Control", Iranian Society of Instrumentation and Control Engineers (ISICE), vol. 11, no. 4, pp. 25-36, Winter 2018 (doi: 20.1001.1.20088345.1396.11.4.3.6).
[17] A. Modiri, S. Mobayen, "Adaptive terminal sliding mode control scheme for synchronization of fractional-order uncertain chaotic systems", ISA Transactions, vol. 105, pp. 33–50, Oct. 2020 (doi: 10.1016/j.isa¬tra.202¬0.0¬5.0¬39).
[18] Y. Chen, C. Tang, M. Roohi, "Design of a model-free adaptive sliding mode control to synchronize chaotic fractional-order systems with input saturation: An application in secure communications", Journal of the Franklin Institute, vol. 358, no. 16, pp. 8109–8137, Oct. 2021 (doi: 10.1016/j.jfranklin.2021.08.007).
[19] J. Mostafaee, S. Mobayen, B. Vaseghi, M. Vahedi, "Dynamical analysis and finite-time fast synchronization of a novel autonomous hyper-chaotic system", Journal of Intelligent Procedures in Electrical Technology, vol. 12, no. 47, pp. 89-109, Dec. 2021 (dor: 20.1001.1.23223871.1400.12.3.6.6).
[20] M.P. Aghababa, "Finite-time chaos control and synchronization of fractional order nonautonomous chaotic (hyperchaotic) systems using fractional nonsingular terminal sliding mode technique", Nonlinear Dynamics, vol. 69, no. 1, pp. 247–261, Nov. 2012 (doi: 10.1007/s11071-011-0261-6).
[21] M. Rasouli, A. Zare, M. Halaji, R. Alizadehsani, "The synchronization of a class of time-delayed chaotic systems using sliding mode control based on a fractional-order nonlinear PID sliding surface and its application in secure communication", Axioms, vol. 11, no. 12, pp. 738-755, Dec. 2022 (doi: 10.3390/ax¬iom¬s11120738).
[22] W. Chen, H. Dai, Y. Song, Z. Zhang, "Convex lyapunov functions for stability analysis of fractional order systems", IET Control Theory, vol. 11, no. 1, pp. 1070-1074, Apr. 2017 (doi: 10.1049/iet-cta.2016.0950).
[23] N. Aguila-Camacho, M.A. Duarte-Mermoud, J.A. Gallegos, "Lyapunov functions for fractional order systems", Communications in Nonlinear Science and Numerical Simulation, vol. 19, no. 9, pp. 2951-2957, Sept. 2014 (doi: 10.1016/j.cnsns.2014.01.022).
[24] A.K. Javan, A. Zare, R. Alizadehsani, "Multi-state synchronization of chaotic systems with distributed fractional order derivatives and its application in secure communications", Big Data and Cognitive Computing, vol. 6, no. 3, Article Number: 82, July 2022 (doi: 10.3390/bdcc6030082).
[25] X. Chen, J.H. Park, J. Cao, J. Qiua, "Sliding mode synchronization of multiple chaotic systems with uncertainties and disturbances", Applied Mathematics and Computation, vol. 308, pp. 161-173, Sept. 2017 (doi: 10.1016/j.amc.2017.03.032).