Design and Implementation of a New Resonant Soft-Switching dc/dc Buck Converter
Subject Areas : Renewable energyArezou Nourbehesht 1 , Masoud Jabbari 2
1 - Electrical Eng. Dept., Azad University of Najafabad, Najafabad, Isfahan, Iran
2 - PhD Condidate/Isfahan University
Keywords: ZCS, Soft-Switching, SwRC, Buck converter, Switching Losses,
Abstract :
This paper presents a new step-down resonant dc-dc converter derived from the family of Switched-Resonator converters (SwRC). Soft-switching conditions are provided for both switches at turn on and turn off transitions by switching under zero-current (ZCS). ZCS technique switching losses and enables the converter to operate at higher switching frequencies which enhances the converter power density. Moreover, it gives better efficiency with few element count and decrease the implementation cost. Due to the turning-off of the resonant diode under ZCS condition, the problem of reverse recovery which is a problematic issue especially in fast diodes is obviated. By employing a simple LC resonant network, soft-switching condition is provided for all the semi-conductor devices. The circuit is simulated by PSpice software and the results are presented. Experimental results from a laboratory prototype are also presented. Simulation and practical results confirm integrity of the presented theoretical analysis and show the full-load efficiency at 92.32%.
[1] N.Mohan, T. M. Undeland, and W. P. Robbins, “Power electronics: converters, applications, and design”, 3rd ed. Hoboken, NJ: Wiley, 2002.
[2] K. –H. Liu, R. Oruganti, F. C. Lee, “Quasi-resonant converters – topologies and characteristics”, IEEE Trans. On Power Electronincs., Vol. 2, No. 1, pp. 62–71, Jan 1987 (doi: 10.1109/TPEL.1987.4766333).
[3] M. Jabbari, “Unified analysis of switched-resonator converters", IEEE Trans. On Power Electronincs, Vol. 2, No. 1, pp. 1364–1376, May 2011 (doi:10.1109/TPEL.2010.2079954).
[4] D. Maksimovic, S. Cuk, “A general approach to synthesis and analysis of quasi-resonant converters”, IEEE Trans. on Power Electronics, Vol. 2, No. 1, pp. 127–140, Jan. 1991 (doi:10.1109/63.65011).
[5] D. Maksimovic, S. Cuk, “Constant –frequency control of quasi –resonant converters,” IEEE Trans. On Power Electronincs., Vol. 6, No. 1, pp. 141–150, Jan 1991 (doi: 10.1109/63.65012).
[6] E.E. Buchanan, E.J. Miller: “Resonant switching power conversion technique, ” IEEE Power Electronics Specialists Conference, pp. 188-193, June 1975 (doi: 10.1109/PESC.1975.7085581)
[7] M. B. Borage, K. V. Nagesh, M. S. Bhatia, and S. Tiwari, “Characteristics and design of an asymmetrical duty-cycle- controlled LCL-T resonant converter,” IEEE Trans. On Power Electronincs., Vol. 24, No. 10, pp. 2268–2275, Oct 2009 (doi: 10.1109/TPEL.2009.2022627).
[8] C. L. Chia and K. K. Sng, “A novel robust control method for the series-parallel resonant converters,” IEEE Trans. On Power Electronincs., Vol. 2, No. 1, pp. 1896-1904, Aug 2009 (doi: 10.1109/TPEL.2009.2017536).
[9] M. P. Foster, C. R. Gould, A. J. Gilbert, D. A. Stone and C. M. Bingham, “Analysis of CLL voltage-output resonant converters using describing functions,” IEEE Trans. On Power Electronincs., Vol. 23, No. 4, pp. 1772–178, July 2008 (doi: 10.1109/TPEL.2008.924835).
[10] F. Dianbo, F. C. Lee, Q. Yang, and F. Wang, “A novel high-power –density three-level LCC resonant converter with constant-power factor control for charging applications,” IEEE Trans. On Power Electronincs., Vol. 23, No. 5, pp. 2411-2420, Spt 2008 (doi: 10.1109/TPEL.2008.2002052).
[11] D. Fu, Y. Liu, F. C. Lee, and M. Xu, “A novel driving scheme for synchronous rectifiers in LLC resonant converters,” IEEE Trans. On Power Electronincs., Vol. 5, No. 5, pp. 1321-1329, May 2009 (doi: 10.1109/TPEL.2009.2012500).
[12] D. Fu, B. Lu, and F. C. Lee, “1 MHZ high efficiency LLC resonant converters with synchronous rectifier,” IEEE Power Electronics Specialists Conference, , pp. 2404-2410, June 2007 (doi: 10.1109/PESC.2007.4342388).
[13] M. Jabbari, H. Farzanehfard: “Family of soft switching resonant dc–dc converters,” IET Power Electron, Vol. 2, No. 2, pp. 113–124, March 2009 (doi: 10.1049/iet-pel:20080027).
[14] Y.P.B. Yeung, K.W.E. Cheng, S.L. Ho, K.K. Law, D. Sutanto: “Unified analysis of switched- capacitor resonant converters,” IEEE Transactions on Industrial Electronics., Vol. 51, No. 4, pp. 864–873, Aug 2004 (doi: 10.1109/TIE.2004.831743).
[15] K.K. Law, K.W.E. Cheng, Y.P.B. Yeung: “Design and analysis of switched-capacitor-based step-up resonant converters, ” IEEE Transactions on Circuits and Systems., Vol. 52, No. 5, pp. 943–948, May 2005 (doi: 10.1109/TCSI.2004.840482).
[16] M. Jabbari H. Farzanehfard, “Resonant inverting-buck converter, ” IET Power Electron, Vol. 3, No. 4, pp. 571-577, July 2010 (doi: 10.1049/iet-pel:20080027).
[17] M. Jabbari H. Farzanehfard, “Analysis and experimental results of switched-resonator-based buck-boost and inverting-buck converters”, Proceeding of the IEEE/PEDG, pp.412-416, Hefei, China, June 2010 (doi: 10.1109/PEDG.2010.5545775).
[18] A.K.S. Bhat: “Analysis and design of a series-parallel resonant converter,” IEEE Trans. On Power Electronincs., Vol. 8, No. 1, pp. 1–11, Jan 1993 (doi: 10.1109/TPEL.2009.2017536).
[19] E.E. Buchanan, E.J. Miller: “Resonant switching power conversion technique, ” IEEE Power Electronics Specialists Conference, pp. 188–193., June 1975 (doi: 10.1109/PESC.1975.7085581).
[20] A.Ioinovici, H.S.H. Chung, M.S. Makowski, C.K. Tse: “Comments on unified analysis of switched- capacitor resonant converters,” IEEE Transactions on Circuits and Systems., Vol. 54, No. 1, pp. 684–685, Feb 2007 (doi: 10.1109/TCSI.2004.840482).
[21] M. Shoyama, T. Naka, T. NinomiaI: “Resonant switched capacitor converter with high efficiency, ” IEEE 35th Annual Power Electronics Specialists Conference, pp 3780–3786., June 2004 (doi: 10.1109/PESC.2004.1355143).
[22] Y.P.B. Yeung, K.W.E. Cheng, D. Sutanto, S.L. Ho: “Zero-current switching switched-capacitor quasi resonant step-down converter, ” IEE Proceedings - Electric Power Applications, Vol. 152, No. 6, pp. 111–121 Nov 2005 (doi: 10.1049/ip-epa:20050138).
[23] K.W.E. Cheng: “Zero-current-switching switched-capacitor converters, ” IEE Proceedings - Electric Power Applications, Vol. 148, No.5, pp. 403–409 Sep 2001 (doi: 10.1049/ip-epa:20010516).
[24] M. Madsen, A. Knott and M. A. E. Andesen “Low power very high frequency resonant converter with high step-down ratio,” IET Power Electron, Vol. 27, No. 8, pp. 3568-3575, Sept 2013 (doi: 10.1109/AFRCON.2013.6757595).
[25] C. Tasi Pan, C. Feng Chuang, C. Chi Chu and H. Chien Cheng “A novel transformer less interleaved four-phase high step-down DC converter with low switch voltage stress,” 2014 International Power Electronics Conference (IPEC-Hiroshima 2014 - ECCE ASIA)., May 2014 (doi: 10.1109/IPEC.2014.6869981).
[26] M. Uno “PWM switched capacitor voltage divider with high step-down ratio ,” IEEE 10th International Conference on Power Electronics and Drive Systems (PEDS)., Vol. 54, No. 1, pp. 684–685, April 2013 (doi: 10.1109/PEDS.2013.6527215).
[27] M. Esteki, N. Einabadi, E. Adib and H. Farzanehfard “A high step-down DC-DC converter with low switch voltage stress and extremely low output current ripple,” 7th Power Electronics and Drive Systems Technologies Conference (PEDSTC).,Feb 2016, (doi: 10.1109/PEDSTC.2016.7556851).
[28] S. Hung Lio “Bidirectional DC-DC converter with high step-down and step-up voltage conversion ratio,” IEEE 2nd Annual Southern Power Electronics Conference (SPEC)., Dec 2016. (doi: 10.1109/SPEC.2016.7846082).
[29] C. Tasi Pan, C. Feng Chuang, C. Chi Chu and H. Chien Cheng “A novel transformer less interleaved high step-down DC converter with low switch voltage stress,” IEEE Transactions on Power Electronics., Vol. 31, No. 1, pp. 406–417, Jan 2016 (doi: 10.1109/TPEL.2015.2400991).
[30] O. Kirshenbiom “High efficiency non-isolated converter with very high step-down conversion ratio,” IEEE Transactions on Power Electronics., Vol. 32, No. 5, pp. 3683 - 3690, July 2016 (doi: 10.1109/TPEL.2016.2589321).
[31] M. Jabbari, “Unified Analysis of Switched-Resonator Converters,” IEEE Transactions on Power Electronics., Vol. 26, No. 5, pp. 1364-1376, May 2016 (doi: 10.1109/TPEL.2010.2079954).
_||_