New approach for estimation of long memory parameters in financial time series
Subject Areas : Financial Knowledge of Securities Analysisسید محمد سیدحسینی 1 * , مسعود باباخانی 2 * , سید محمد هاشمی نژاد 3 * , سید بابک ابراهیمی 4 *
1 - ندارد
2 - ندارد
3 - ندارد
4 - مسئول مکاتبات
Keywords: long memory, Time series, Bootstrap,
Abstract :
When past observations have a high correlation with future and it cannot be ignored,studied time series has long memory. Examining of existing of long memory in timeseries has a lot of application in finance and lots of ways have been created to examine itbut they have lots of mistakes. Bootstrap Approach has been used in this paper for give usa good proxy of sampling distribution in order to estimate of memory parameters. Thisapproach has less limitation than others and can deal with most of difficult problem. Inthis research we use the data of price index of Tehran Stock Exchange for duration ofDecember of 2006 till June of 2010 for estimating parameter of long memory, finally theresults show the estimation of parameter of long memory has improved.
) کشاورزحداد، غلامرضا.، ابراهیمی، سیدبابک و
اکبر جعفر عبدی، ( 1390 ). "بررسی سرایت
تلاطم میان بازدهی سهام صنعت سیمان و
صنایع مرتبط با آن در ایران" فصلنامه پژوهش -
،( های اقتصادی ایران، سال شانزدهم(شماره 47
تهران، ایران.
2) علیرضا عرفانی، ( 1387 ). "بررسی حافظه
بلندبودن شاخص کل قیمت بورس اوراق بهادار
تهران" پژوهشنامه علوم اقتصادی، سال هشتم
(شماره 28 ) ، تهران، ایران.
3) نظری، محسن و الهام فرزانگان، ( 1390 ). "بی
قاعدگیهای دورهای در بازدهی سهام عادی
بوری ارواق بهادار تهران(روش بازنمونهگیری
بوت استراپ ناپارامتریک" نشریه تحقیقات
مالی، دوره 13 ، شماره 31 ، تهران، ایران.
4) Barkoulas, J.T., Baum, C.F., and Travlos,
N., (2000). "Long Memory in the Greek
Stock Market", Applied Financial
Economics 10, pp.177-184.
5) Bhardwaj, G., & Swanson, N. R.
(2004).”An Empirical Investigation of the
Usefulness of ARFIMA Models for
Predicting Macroeconomic and Financial
Time Series”. Journal of Econometrics
,Vol.131(1-2), pp.539-578 .
6) Conrad J., Kaul G. (1989). Mean
Reversion in Short-Horizon Expected
Returns, the Review of financial studies,
Vol. 2, No. 2, pp. 225-240.
7) Davidson Russell, MacKinnon James. G,
(2004). “Econometric Theory and
Methods”. Oxford University Press.
8) Efron, B. & Tibshirani, R. J. (1993). “An
introduction to the Bootstrap”, London,
Chapmann & Hall.
9) Geweke, J., & Porter-Hudak, S. (1983).
“The estimation and application of long
memory time series models”. Journal of
Time Series Analysis, pp.221-238.
10) Granger, C. W. J. and Joyeux, R. (1980),”
An Introduction to Long Memory time
Series Models and Fractional difference”,
Journal of Time Series Analysis 1, pp.15-
29.
11) Grau-Carles, Pilar (2000). “Empirical
Evidence of Long-Range Correlations
inStock Returns”, Physica A 287, pp.396-
404.
12) Green, William H., (2003). “Econometric
Analysis”, Fifth Edition, New Jersey:
Prentice Hall.
13) Hall peter (1994).” Methodology and
Theory for Bootstrap”. Australian National
University, Handbook of Econometrics,
IV, Elsevier Science.
14) Jensen, M.J., (1999), “Using Wavelets to
Obtain a Consistent Ordinary Least
Squares Estimator of the Long Memory
Parameter”, Journal of Forecasting,
Vol.18, pp.17-32.
15) Jensen, M.J., (2000), “An Alternative
Maximum Likelihood Estimator of Long
Memory Processes Using Compactly
Supported Wavelets”, Journal of
Economic Dynamics and Control, Vol.24,
No.3, pp.361-387.
16) Lo, A. (1991).”Long term memory in
stock market prices”. Econometrica,
Vol.59, No.5, pp.1279-1313.
17) Mahmoudi, Vahid., Mohammadi, Shapour
& Hasti. Chitsazan, (2010). “A Study of
Long Memory Trend for International Oil
Markets”, Journal of Research in
Economic Modeling, Vol.1, No.1, pp.29-
49.
18) Norouzzadeh. P & B. Rahmani, (2005).
“Application of Multi fractal Measures to
Tehran Price Index”, Physica A, No.356,
pp.609-627.
19) Palma, Wilfredo, (2007),” Long-Memory
Time Series, Theory and Methods”, New
Jersey: John Wiley & Sons, Inc.
20) Peng C. K., S. Havlin, H. E. Stanley, A. L.
Goldberger. (1995), “Quantification of
Scaling Exponent and Crossover
Phenomena in Non stationary heartbeat
time series”, Chaos, No.5, pp.82-87.
21) Peters. E. E. (199٩).” fractal market
analysis”, Wiley- New York.
22) Poon S. H., W. J. Granger C. (2003).
“Forecasting Volatility in Financial
Markets: A Review”, Journal of Economic
Literature, Vol.41, No.2, pp. 478–539.
23) Rachev Svetlozar T., Mittnik Stefan,
Fabozzi Frank J., Focardi Serjio M., Jasic
Teo. (2007). “Financial Econometrics
from Basics to Advanced Modeling
سیدمحمد سیدحسینی، مسعود باباخانی، سیدمحمد هاشمی نژاد و سیدبابک ابراهیمی
114 فصلنامه علمی پژوهشی دانش مالی تحلیل اوراق بهادار / شماره هجدهم
Techniques Financial Econometrics: From
Basics to Advanced Modeling
Techniques”. The FRANK J. FABOZZI
Series. John Wiley & Sons, Inc.
24) Sowell, F. (1992). Maximum Likelihood
Estimation of Stationary Univariate
Fractionally Integrated Time Series
Models. Journal of Econometrics, Vol.53,
issue.1-3, pp.165-188.
25) Tolvi, Jussi, (2003), “Long Memory and
Outliers in Stock Market Returns”,
Applied Financial Economics, Vol.13 (7),
pp.495-502.
26) Xiu Jin & Yao Jin, (2007). “Empirical
Study of ARFIMA model based on
fractional differencing”, Physica A- 377.
27) Zivot, Eric and Wang, Jiahui(2003).
“Modelling Financial Time Series with SPLUS”,
New York: Springer-Verlag,
ISBN 0-387-95549-6