Validation of Taurine Determination Method in Energy Drinks by High Performance Liquid Chromatography
Subject Areas : food quality controlM. Zabihi Negin 1 , M. Taherkhani 2
1 - PhD Student of the Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University (IAUPS), Tehran, Iran.
2 - Associate Professor of the Department of Chemistry, Takestan Branch, Islamic Azad University, Takestan, Iran.
Keywords: Taurine, Energy Drinks, High Performance Liquid Chromatography,
Abstract :
The presence of taurine in energy drinks stimulates the central nervous system and intensifies brain activity, reducing fatigue and creating alertness. Consuming high doses of taurine can cause adverse symptoms such as headache, irritability, and kidney problems. Therefore, it is necessary to monitor the constituents of energy drinks to ensure the level of taurine in the products. The standard concentration defined for energy drinks is 400-1500 mg/liter and acceptable daily intake (ADI) is equal to 21 mg/kg/day. In this research, high performance liquid chromatography (HPLC) was used to measure and validate the analysis method of 10 different brands of energy drinks. After validation of the method, 10 drink samples were collected from Tehran city and tested for taurine content. In order to separate taurine, a gradient system with a mobile phase of phosphate buffer solution/acetonitrile/ methanol and deionized water (45:45:10) was used and measurement was carried out using ultraviolet detector at 338 nm wavelength. The results indicated that the lowest concentration of taurine among all the examined samples is related to the Red Bull brand with an amount of 116.46 mg/L and the highest amount is related to the Happy Life brand with a concentration of 2006.68 mg/L. It was taken the limit of detection (LOD) was calculated as 27.18 mg/L and the limit of quantification (LOQ) as 90.60 mg/L. Comparison of the obtained results with international standards showed that the taurine content of these drinks is lower than the standard limit in most of the examined samples.
Ariffin, H., Chong, X.Q., Chong, P.N. & Okechukwu, P.N. (2022). Is the consumption of energy drink beneficial or detrimental to health: a comprehensive review? Bulletin of the National Research Centre, 46(1), 163. http://doi.org/10.1186/s42269-022-00829-6
Bagci, G. & Okten, H. (2022). The effects of taurine supplementation on obesity and browning of white adipose tissue in high-fat diet-fed mice, Nucleosides, Nucleotides and Nucleic Acids, 23, 1-15. http://doi.org/10.1080/15257770.2022.2114597
Baliou, S., Adamaki, M., Ioannou, P., Pappa, A., Panayiotidis, M.I., Spandidos, D.A., Christodoulou, I., Kyriakopoulos, A.M. & Zoumpourlis, V. (2021). Protective role of taurine against oxidative stress (Review). Molecular Medicine Reports, 24(2), 605. http://doi.org/10.3892/mmr.2021.12242
Bouviere, J., Fortunato, R.S., Dupuy, C., Werneck-de-Castro, J.P., Carvalho, D.P. & Louzada, R.A. (2021). Exercise-Stimulated ROS Sensitive Signaling Pathways in Skeletal Muscle. Antioxidants, 10(4), 537. http://doi.org/10.3390/antiox10040537
Carvalho, M.Bd., Brandao, C.F.C., Fassini, P.G., Bianco, T.M., Batitucci, G., Galan, B.S.M., Carvalho, F.G.D., Vieira, T.S., Ferriolli, E., Marchini, J.S., Silva, A.S.Rd. & Freitas, E.Cd. (2020). Taurine Supplementation Increases Post-Exercise Lipid Oxidation at Moderate Intensity in Fasted Healthy Males. Nutrients, 12(5), 1540. http://doi.org/10.3390/nu12051540
Costa-Valle, M.T., Tonieto, B.D., Altknecht, L., Cunha, C.D., Fão, N., Cestonaro, L.V., Göethel, G., Garcia, S.C., Leal, M.B., Dallegrave, E. & Arbo, M.D. (2018). Energy drink and alcohol combination leads to kidney and liver alterations in rats, Toxicology and Applied Pharmacology, 355, 138-146. http://doi.org/10.1016/j.taap.2018.06.024
Curran, C.P. & Marczinski, C.A. (2017). Taurine, caffeine, and energy drinks: Reviewing the risks to the adolescent brain. Birth Defects Research, 109(20), 1640-1648. http://doi.org/10.1002/bdr2.1177
Ehlers, A., Marakis, G., Lampen, A. & Hirsch-Ernst, K.I. (2019). Risk assessment of energy drinks with focus on cardiovascular parameters and energy drink consumption in Europe, Food and Chemical Toxicology, 130, 109-121. http://doi.org/10.1016/j.fct.2019.05.028
Ellermann, C., Hakenes, T., Wolfes, J., Wegner, F.K., Willy, K., Leitz, P., Rath, B., Eckardt, L. & Frommeyer, G. (2022). Cardiovascular risk of energy drinks: Caffeine and taurine facilitate ventricular arrhythmias in a sensitive whole-heart model. Journal of Cardiovascular Electrophysiology, 33(6), 1290-1297. http://doi.org/10.1111/jce.15458
Erdmann, J., Wiciński, M., Wódkiewicz, E., Nowaczewska M., Słupski M., Otto S.W., Kubiak K., Huk-Wieliczuk E. & Malinowski B. (2021). Effects of Energy Drink Consumption on Physical Performance and Potential Danger of Inordinate Usage. Nutrients, 13(8), 2506. http://doi.org/10.3390/nu13082506
Farag, A.S., Klikarová, J., Česlová, L., Vytřas, K. & Sýs, M. (2019). Voltammetric determination of taurine in energy drinks after o-phthalaldehyde-ethanethiol derivatization, Talanta. 202, 486-493. http://doi.org/10.1016/j.talanta.2019.04.083
González-Vázquez, M., Meza-Márquez, O.G., Gallardo-Velázquez, T., Osorio-Revilla, G., Velázquez Hernández, J.L. & Hernández-Martínez, M. (2020). Simultaneous Determination of Caffeine and Taurine in Energy Drinks by FT-MIR Spectroscopy Coupled with Multivariate Analysis, Journal of Spectroscopy, 1-10, Article ID 8835846. http://doi.org/10.1155/2020/8835846
Hafner, E., Hribar, M., Hristov, H., Kušar, A., Žmitek, K., Roe, M. & Pravst, I. (2021). Trends in the Use of Low and No-Calorie Sweeteners in Non-Alcoholic Beverages in Slovenia. Foods (Basel, Switzerland). 10(2), 387. http://doi.org/10.3390/foods10020387
Heckman, M.A., Sherry, K. & Mejia, E.G. De. (2010). Energy Drinks: An Assessment of Their Market Size, Consumer Demographics, Ingredient Profile, Functionality, and Regulations in the United States. Comprehensive Reviews in Food Science and Food, 9(3), 303-317. http://doi.org/10.1111/j.1541-4337.2010.00111.x
Hohmann, M., Felbinger, C., Christoph, N., Wachter, H., Wiest, J. & Holzgrabe, U. (2014). Quantification of taurine in energy drinks using ¹H NMR. Journal of Pharmaceutical and Biomedical Analysis, 93, 156-160. http://doi.org/10.1016/j.jpba.2013.08.046
Ito, T., Schaffer, S.W. & Azuma, J. (2012). The potential usefulness of taurine on diabetes mellitus and its complications. Amino acids, 42(5), 1529-1539. http://doi.org/10.1007/s00726-011-0883-5
Jakaria, M., Azam, S., Haque, M.E., Jo, S.H., Uddin, M.S., Kim, I.S. & Choi, D.K. (2019). Taurine and its analogs in neurological disorders: Focus on therapeutic potential and molecular mechanisms. Redox Biology, 24(2), 101223. http://doi.org/10.1016/j.redox.2019.101223
Jong, C.J., Sandal, P. & Schaffer, S.W. (2021). The Role of Taurine in Mitochondria Health: More Than Just an Antioxidant. Molecules (Basel, Switzerland), 26(16), 4913 http://doi.org/10.3390/molecules26164913
Manzano, S., Agüera, L., Aguilar, M. & Olazarán, J. (2020). A Review on Tramiprosate (Homotaurine) in Alzheimer's Disease and Other Neurocognitive Disorders. Frontiers in Neurology. 11, 614. http://doi.org/10.3389/fneur.2020.00614
Mc Conn, B. (2012). Determination of taurine in energy drinks by high-performance liquid chromatography, Concordia College. Journal of Analytical Chemistry. 3, 47-52.
Merckx, C. & De Paepe, B. (2022). The Role of Taurine in Skeletal Muscle Functioning and Its Potential as a Supportive Treatment for Duchenne Muscular Dystrophy. Metabolites, 12(2), 193. http://doi.org/10.3390/metabo12020193
Moludi, J., Qaisar, S.A., Kadhim, M.M., Ahmadi, Y. & Davari, M. (2022). Protective and therapeutic effectiveness of taurine supplementation plus low calorie diet on metabolic parameters and endothelial markers in patients with diabetes mellitus: a randomized, clinical trial. Nutrition and metabolism (Lond), 19(1), 49. http://doi.org/10.1186/s12986-022-00684-2
Muli, S., Goerdten, J., Oluwagbemigun, K., Floegel, A., Schmid, M. & Nöthlings, U. (2021). A Systematic Review of Metabolomic Biomarkers for the Intake of Sugar-Sweetened and Low-Calorie Sweetened Beverages. Metabolites, 11(8), 546. http://doi.org/10.3390/metabo11080546
Omer, M.M.A., Omar, M.M.A., Abdelaziz, M.A., Thiel, A. & Elbashir, A.A. (2019). Liquid Chromatographic and Spectrophotometric Determination of Taurine in Energy Drinks Based on O-Phthalaldehyde-Sulfite Derivatization, Journal of Food Chemistry and Nanotechnology, 5(1), 1-7. http://doi.org/10.17756/jfcn.2019-065
Owoeye, O., Adedara, I.A. & Farombi, E.O. (2018). Pretreatment with taurine prevented brain injury and exploratory behaviour associated with administration of anticancer drug cisplatin in rats, Biomedicine and Pharmacotherapy, 102, 375-384. http://doi.org/10.1016/j.biopha.2018.03.051
Rafiee, Z., García-Serrano, A.M. & Duarte, J.M.N. (2022). Taurine Supplementation as a Neuroprotective Strategy upon Brain Dysfunction in Metabolic Syndrome and Diabetes. Nutrients, 14(6), 1292. http://doi.org/10.3390/nu14061292
Rai, K.P., Rai, H.B., Dahal, S., Chaudhary, S.K. & Shrestha, S. (2016). Determination of Caffeine and Taurine Contents in Energy Drinks by HPLC-UV. Journal of Food Science and Technology Nepal, 9, 66-73. http://doi.org/10.3126/JFSTN.V9I0.16199
Ripps, H. & Shen, W. (2012). Review: taurine: a "very essential" amino acid. Molecular vision, 18, 2673-2686. https://pubmed.ncbi.nlm.nih.gov/23170060/
Sawabe, Y., Tagami, T. & Yamasaki, K. (2008). Determination of Taurine in Energy Drinks by HPLC Using a Pre-column Derivative, Journal of Health Science, 54(6), 661-664. http://doi.org/10.1248/jhs.54.661
Schaffer, S. & Kim, H.W. (2018). Effects and Mechanisms of Taurine as a Therapeutic Agent. Biomolecules and therapeutics (Seoul), 26(3), 225-241. http://doi.org/10.4062/biomolther.2017.251. PMID: 29631391; PMCID: PMC5933890.
Shao, A. & Hathcock, J.N. (2008). Risk assessment for the amino acids taurine, l-glutamine and l-arginine, Regulatory Toxicology and Pharmacology, 50(3), 376-399. http://doi.org/10.1016/j.yrtph.2008.01.004
Tao, X., Zhang, Z., Yang, Z. & Rao, B. (2022). The effects of taurine supplementation on diabetes mellitus in humans: A systematic review and meta-analysis, Food Chemistry: Molecular Sciences, 4, 100106. http://doi.org/10.1016/j.fochms.2022.100106
Terry, L.C., Crowley, W.R. & Johnson, M.D. (1982). Regulation of episodic growth hormone secretion by the central epinephrine system. Studies in the chronically cannulated rat. The Journal of Clinical Investigation, 69(1), 104-112. http://doi.org/10.1172/jci110420
Tevatia, R., Allen, J., Rudrappa, D., White, D., Clemente, T.E., Cerutti, H., Demirel, Y. & Blum, P. (2015). The taurine biosynthetic pathway of microalgae, Algal Research, 9, 21-26. http://doi.org/10.1016/j.algal.2015.02.012
Thirupathi, A., Pinho, R.A., Baker, J.S., István, B. & Gu, Y. (2020). Taurine Reverses Oxidative Damages and Restores the Muscle Function in Overuse of Exercised Muscle. Frontiers in Physiology, 11, 582449. http://doi.org/10.3389/fphys.2020.582449
Ulenius, L., Adermark, L., Söderpalm, B. & Ericson, M. (2019). Energy drink constituents (caffeine and taurine) selectively potentiate ethanol-induced locomotion in mice, Pharmacology Biochemistry and Behavior, 187, 172795. http://doi.org/10.1016/j.pbb.2019.172795
Wassef, B., Kohansieh, M. & Makaryus, A.N. (2017). Effects of energy drinks on the cardiovascular system. World Journal of Cardiology, 9(11), 796-806. http://doi.org/10.4330/wjc.v9.i11.796
Wójcik, O.P., Koenig K.L., Zeleniuch-Jacquotte A., Costa M. & Chen Y. (2010). The potential protective effects of taurine on coronary heart disease. Atherosclerosis, 208(1), 19-25. http://doi.org/10.1016/j.atherosclerosis.2009.06.002
Wu, G. (2020). Important roles of dietary taurine, creatine, carnosine, anserine and 4-hydroxyproline in human nutrition and health. Amino Acids, 52(3), 329-360. http://doi.org/10.1007/s00726-020-02823-6
Zlotkin, S.H., Bryan, M.H. & Anderson, G.H. (1981). Cysteine supplementation to cysteine-free intravenous feeding regimens in newborn infants., The American Journal of Clinical Nutrition, 34(5), 914-923. http://doi.org/10.1093/ajcn/34.5.914