Effect of magnetic field, culture medium and growth regulators on seed germination of Catharanthus roseus L.
Subject Areas : Developmental biology of plants and animals , development and differentiation in microorganismsMaryam Peyvandi 1 , Seyede Maryam Seyed Talebi 2 , Ahmad Majd 3
1 - Iau-tnb.ac.ir
2 - Department of Biology, Faculty of Biological Sciences, Islamic Azad University, Tehran-North Branch
3 - Department of Biology, Faculty of Biological Sciences, Islamic Azad University, Tehran-North Branch
Keywords: magnetic field, Medium Culture, Growth Regulator, Catharanthus roseus L,
Abstract :
Catharanthus roseus L., commonly known as the periwinkle, is one of the most important medicinal plants that included worthwhile alkaloids. The effect of the intensity and duration of magnetic field, medium strength and growth regulators were investigated on percentage of seeds germination. Sterilized seeds were exposed to different intensities of magnetic field (1, 2, 4mT) daily for 15 minutes during a week or a month. Treated seeds were cultured in MS or 1/2 MS media supplemented with different hormone combinations. Results indicated that application of MF for one month period caused the decrease in seed germination. To Investigate the hormone combination effect, the MF treated seeds were cultured in 1/2 MS media supplemented with 2,4-D and kinetine. In the presence of 2,4-D, the percentage of germination, production and growth of callus were increased. In the culture medium containing 2iP or Kinetin, seedling growth was performed without callus formation. Kinetine increased the number of shoots in a seedling without induction of callus production.
[1] مجد ا.، فرض پور ماچیانی س.، درانیان د، 1۳89 ، بررسی اثر میدان های مغناطیسی بر جوانه زنی بذرها و تکوین دانه رست ،(Vicia sativa L) های ما فیزیولوژی محیطی گیاهی (پژوهش های .5-9 :1اکوفیزیولوژی گیاهی ایران)، ،1۳89 ] اربابیان، ص.، مجد ا.، سالاری پور س،
2[ تاثیر میدان های الکترومغناطیسی بر اندام های رویشی، تکوین دانه های گرده، رویش و رشد لوله Glycine max L های گرده گیاه سویا ، مجله (1 علمی پژوهشی سلول و بافت 1 :) 42۳5 . ] غلامحسین پور ز.، همتی خ.، دورودیان ح.ر.،
۳[ تأثیر سطوح ،1۳9۳ قاسم نژاد ع.، شرفی ع، مختلف نیتروژن بر عملکرد و غلظت آلکالوییدهای وینبلاستین و وینکریستین در گیاه پروانش )، مجله Cataranthus roseusus( پژوهش .269-275 :27)2 های گیاهی،(
[4] Abe K., Fujii N., Mogi I., Motokawa M., Takahashi H، 1997, Effect of a high magnetic field on plant Biol. Sci. Space, 11: 240–247.
[5] Ahmad M., Lin C.T., Cashmore A. R. 1995, Mutations throughout an Arabidopsis blue-light photoreceptor impair blue-lightresponsive anthocyanin accumulation and inhibition of hypocotyl elongation, Plant J, 8: 653–658.
[6] Ahmad M., Galland P., Ritz T., Wiltschko R., Wiltschko W. 2007, Magnetic intensity affects cryptochrome-dependent responses in Arabidopsis thaliana, Planta, 225: 615– 624.
[7] Aladjadjiyan, A. 2010, Influence of stationary magnetic field on lentil seeds. International Agrophysics. 24: 321-324.
[8] Alen, K., S. Mohan-Jain S., Huhtikangas A. 1995, Micropropagation of Catharanthus roseus for Vinblastine and Vincristine production ،European Research Conferences on Plant Cell Biology and Biotechnological Applications, Dourdan, 14-19.
[9] Apasheva L. M., Lobanov A. V., Komissarov G.G. 2006, Effect of alternating electromagnetic field on early stages of plant development. Dokl Biochem Biophys, 406: 1 – 3.
[10] Aslam, J., Muji A., Nasim S.A., Sharm .M. P. 2009, Screening of Vincristine yield in ex vitro and in vitro somatic embryos derived plantlets of Catharanthus roseus (L.) G. Don. Sci. Hortic, 119: 325-329.
[11] Belyavskaya N. A. 2001, Ultrastructure and calcium balance in meristem cells of pea roots exposed to extremely low magnetic fields. Adv. space Res., 28:, 645– 650 .
[12] Belyavskaya N. A. 2004, Biological effects due to weak magnetic field on plants، Adv. Space Res., 34: 1566–1574.
[13] El-Assal S. E. D., Onso-Blanco C., Peeters A. J. M., Wagemaker C., Weller J. L., Koornneef M. 2003, The role of cryptochrome 2 in flowering in Arabidopsis. Plant Physiol, 133, 1504– 1516 10.1104/pp.103. 029819.
[14] Florez, M., Carbonell M.V., and Martinez, E. 2007, Exposure of maize seeds to stationary magnetic fields: Effects on germination and early growth، Environment. Experimental Botany, 59:68–75.
[15] Kato R., Kamada H, Asashma M. 1989, Effect of high and very low magnetic field on the growth of hairy roots of Daucus carotta and Atropa belladonna. Cell Physiology, 30: 605–608.
[16] Khan, A. M., Sharma M. P. 2010, Catharanthus roseus (L.) G. Don، An important drug: Its applications and production، Intl. J. Compreh. Pharm, 4 (12): 1-16.
[17] Kothari, S.L., Josh A., Kachhwaha S., Ochoa-Alejo N. 2010, Chilli peppers– A review on tissue culture and transgenesis. Biotechnol. Adv., 28: 35-48.
[18] Koul, M., Lakra, N. S., Chandra, R., Chandra, S. 2013, Catharanthus roseus and prospects of its endophytes: a new avenue for production of bioactive metabolites. International Journal of Pharmaceutical Sciences and Research, 4(7): 2705-2716.
[19] Lashgari Moghaddam N., Peyvandi, M., Majd A. 2015, The effect of magnetic field on growth and activity of auxin oxidase enzyme and the quantity and quality of garlic essence (allium sativum l.). IJBPAS, 4(12): 1831-1840.
[20] Lin C. T. 2002, Blue light receptors and signal transduction، Plant Cell, 14: 207– 225 .
[21] Martinez E., Carbonell M. V., Amaya, J. M. 2000, A static magnetic field of 125 mT stimulates the initial growth stages of barley (Hordenum vulgare L.). Electro and Magnet, 19(3): 271-277.
[22] Maffei M. E. 2014, Magnetic field effects on plant growth, development, and evolution, Front Plant Sci., 5: 445
[23] Mengxiang G., Zhang J., Feng H. 2011, Extremely Low Frequency Magnetic Field Effects on Metabolite of Aspergillus Niger، Bioelectromagnetics, 32:7378.
[24] Moon J.D., Chung H.S. 2000, Acceleration of germination of tomato seed by applying AC electric and magnetic fields. J Electrostatics, 48: 103–114.
[25] Mishra Y., Rawat R., Nema B., Shirin F. 2013, Effect of Seed Orientation and Medium Strength on In vitro Germination of Pterocarpus marsupium Roxb.Not Sci Biol, 5(4):476-479
[26] Murashige T. Skoog F. 1962, A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15 (3): 473–497.
[27] Negishi Y., Hashimoto A., Tsushima M., Dobrota C., Yamashita M., Nakamura T. 1999, Growth of pea epicotyl in low magnetic field implication for space research. Adv. Space Res., 23: 2029–2032.
[28] Peyvandi M., Kazemi Khaledi N., Arbabian, S. 2013, The effects of magnetic fields on growth and enzyme activities of Helianthus annuus L. seedlings. Iranian Journal of Plant Physiology, Vol (3), No (3): 717-724.
[29] Pietrosiuk A., Furmanowa M., Lata B. 2007, Catharanthus roseus: Micropropagation and in vitro techniques. Phytochem. Rev., 6: 459-473.
[30] Podesny J., Misiak L. E., Podesna A., Pietruzewski S. 2005, Concentration of radicals in pea seeds after pre-sowing treatment with magnetic field. Agrophysics, 19: 243-249.
[31] Racuciu M., Creanga D., Horga I. 2008, Plant growth under static magnetic field influence. Romania Journal Physics, 53: 353–359.
[32] Radhakrishnan R, Leelapriya T, Kumari B.D. 2012, Effects of pulsed magnetic field treatment of soybean seeds on calli growth, cell damage, and biochemical changes under salt stress، Bioelectromagnetics, 33(8):670-81.
[33] Ritz T., Yoshii T., Helfrich-Foester C., Ahmad M، 2010, Cryptochrome: a photoreceptor with the properties of a magnetoreceptor? Commun. Integr. Biol., 3: 24–27.
[34] Vashisth A., Nagarajan, S. 2010, Effect on germination and early growth characteristics in sunflower (Helianthus annuus) seeds exposed to static magnetic field. Journal Plant Physiology, 167: 149156.
[35] Yano A., Hidaka E., Fujiwara K., Limoto, M, 2001, Induction of primary root curvature in radish seedlings in a static magnetic field، Biolelectromagnetics, 22: 194-199.
_||_