Exploring Health Risks Associated with Heavy Metal Contamination in Groundwater from Industrial Zones in Samut Prakan Province, Thailand
Subject Areas : Journal of Chemical Health Risks
Somkid Tangkan
1
,
Cherlyn Sirisetpop
2
*
,
Potchanun Sripothong
3
1 - Faculty of Science and Technology, Valaya Alongkorn Rajabhat University under the Royal Patronage, Pathumthani, 13180, Thailand
2 - Faculty of Public Health, Valaya Alongkorn Rajabhat University under the Royal Patronage, Pathumthani, 13180, Thailand
3 - School of Engineering Science and Technology, Sarasas Suvarnabhumi Institute of Technology, Samut Prakan, 10540, Thailand
Keywords: Health risk assessment, Contamination, Heavy metals, Groundwater,
Abstract :
Groundwater in industrial zones is often contaminated with heavy metals, posing significant health risks. This study investigates the contamination of arsenic, nickel, lead, and zinc in groundwater from the Bangkok, Phra Pradaeng, Nakhon Luang, and Nonthaburi aquifers and assesses the health risks associated with heavy metal contamination in groundwater within Samut Prakan Province. Groundwater samples were collected from observation wells (n=16) and analyzed for dissolved heavy metals using USEPA 200.7 and 6010D standard methods. Health risks were assessed for both non-carcinogenic and carcinogenic effects using USEPA models. The results showed that arsenic levels exceeded USEPA and WHO standards in the Nakhon Luang and Nonthaburi aquifers. Nickel and lead levels surpassed the permissible limits of USEPA, WHO, and NOAA in all aquifers. Exposure assessments indicated that children had higher levels of heavy metals, with ingestion as the main route of exposure. Non-carcinogenic health risks from arsenic, nickel, lead, and zinc through ingestion and dermal contact were found to be significant for both children and adults (HI > 1) in all groundwater aquifers. The carcinogenic health risk assessment revealed unacceptable cancer risks from the ingestion of arsenic, nickel, and lead, and dermal exposure to arsenic and nickel (TCR > 10-4) in all groundwater aquifers. These findings indicate the need for close monitoring and management of industrial activities to prevent further heavy metal contamination in groundwater, thereby reducing health risks for individuals relying on this resource.
1. Lubal M.J., 2024. Impact of Heavy Metal Pollution on the Environment. Uttar Pradesh Journal of Zoology. 45(11), 97–105. doi: 10.56557/upjoz/2024/v45i114074.
2. Zaynab M., Al-Yahyai R., Ameen A., Sharif Y., Ali L., Fatima M., Khan K.A., Li S., 2022. Health and environmental effects of heavy metals. Journal of King Saud University - Science. 34(1), 101653. doi: 10.1016/j.jksus.2021.101653.
3. Ullah Z., Rashid A., Ghani J., Nawab J., Zeng X.C., Shah M., Alrefaei A.F., Kamel M., Aleya L., Abdel-Daim M.M., Iqbal J., 2022. Groundwater contamination through potentially harmful metals. Frontiers in environmental science. 2022(10), 1054924. doi: 10.3389/fpls.2022.1054924.
4. Gupta M., Dwivedi V., Kumar S., Patel A., Niazi P., Yadav V.K., 2024. Lead toxicity in plants: mechanistic insights into toxicity, physiological responses of plants and mitigation strategies. Plant Signaling & Behavior. 19(1), 2365576. doi: 10.1080/15592324.2024.2365576.
5. Jomova M., Makova M., Alomar S.Y., Alwasel S.H., Nepovimova E., Kuca K., Rhodes C.J., Valko M., 2022. Essential metals in health and disease. Chemico-Biological Interactions. 2022(367), 110173. doi: 10.1016/j.cbi.2022.110173.
6. Choi S., Hong D.K., Choi B.Y., Suh S.W., 2020. Zinc in the Brain: Friend or Foe?. Int J Mol Sci. 21(23), 8941. doi: 10.3390/ijms21238941.
7. Timothy N., Williams E.T., 2019. Environmental Pollution by Heavy Metal: An Overview. International Journal of Environmental Chemistry. 3(2), 72-82. doi: 10.11648/j.ijec.20190302.14.
8. Tangkan S., Sirisetpop, 2025. Health risk assessment of heavy metals in Cassava cultivated on leachate-contaminated soil during the early transition from landfilling to co-landfilling with incineration. EQM – International Journal of Environmental Quality. 2025(68), 63-75. doi: 10.6092/issn.2281-4485/21367.
9. Department of Industrial Works. Summary of statistics on the number of industrial plants with a Type 3 operating license and those with a Type 2 notification in Bangkok and regional areas in 2022. https://www.diw.go.th/webdiw/wp-content/uploads/2024/10/facyear2565.xlsx (Accessed Dec 2, 2024).
10. Zhang W., Xin C., Yu S., 2023. A Review of Heavy Metal Migration and Its Influencing Factors in Karst Groundwater, Northern and Southern China. Water. 15(20), 3690. doi: 10.3390/w15203690.
11. Ogbaran N., Uguru H., 2021. Assessment of Groundwater Quality Around an Active Dumpsite using Pollution Index. Civil Eng Res J. 11(3), 555814. doi: 10.19080/CERJ.2021.11.555814
12. Fang H., Wang X., Xia D., Zhu J., Yu W., Su Y., Zeng J., Zhang Y., Lin X., Lei Y., Qiu J., 2022. Improvement of Ecological Risk Considering Heavy Metal in Soil and Groundwater Surrounding Electroplating Factories. Processes. 10(7), 1267. doi: 10.3390/pr10071267.
13. Veskovi J., Onjia A., 2024. Environmental Implications of the Soil-to-Groundwater Migration of Heavy Metals in Mining Area Hotspots. Metals. 14(6), 719. doi: 10.3390/met14060719.
14. Department of Disease Control. 2022. A Lesson Learned Report: Surveillance of Health Impacts from Environmental Pollution: A Case Study of the Explosion and Fire at Ming Dih Chemical Company in Samut Prakan Province. Ministry of Public Health.
15. Department of Industrial Works. List of industrial plants in Bang Pu Industrial Estate. https://bit.ly/4geMwKP (Accessed Dec 6, 2024).
16. Pavithra N., Ramakrishnaiah C R., 2024. Heavy Metal Analysis and Health Risk Assessment of Groundwater and Soil in and Around Peenya Industrial Area, Bengaluru. Ecol Eng Environ Technol. 25(7), 63-79. doi: 10.12912/27197050/188008.
17. Daud M.K., Nafees M., Ali S., Rizwan M., Bajwa R.A., Shakoor M.B., Arshad M.U., Chatha S.A.S., Deeba F., Murad W., Malook I., Shui Jin Zhu S.J., 2017. Drinking water quality status and contamination in Pakistan. BioMed Res Int. 2017(3), 1–18. doi: 10.1155/2017/7908183.
18. Dippong T., Hoaghia M.A., Senila M., 2022. Appraisal of heavy metal pollution in alluvial aquifers. Study case on the protected area of Ronișoara Forest, Romania. Ecological Indicators. 2022(143), 109347. doi: 10.1016/j.ecolind.2022.109347.
19. Caporale A.G., Violante A., 2015. Chemical Processes Affecting the Mobility of Heavy Metals and Metalloids in Soil Environments. Current Pollution Reports. 2015(2), 15–27. doi: 10.1007/s40726-015-0024-y.
20. Mali M., Alfio M.R., Balacco G., Ranieri G., Specchio V., Fidelibus M.D., 2024. Mobility of trace elements in a coastal contaminated site under groundwater salinization dynamics. Scientific Reports. 2024(14), 24859. doi: 10.1038/s41598-024-75974-1.
21. Department of Groundwater Resources. Groundwater Situation in Bangkok and perimeter in 2012. https://bit.ly/4ay7tiG (Accessed Dec 7, 2024).
22. Rodger B.B., Andrew E.D., Eugene W.R., Standard methods for the examination of water and wastewater, 23rd ed., American public health association:Washington, 2017.
23. USEPA. Method 200.7: Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry, Revision 4.4; U.S. Environmental Protection Agency: Cincinnati, OH, 1994.
24. Wilkin R.T., Lee T.R., Beak D.G., Anderson R., Burns B., 2018. Groundwater co-contaminant behavior of arsenic and selenium at a lead and zinc smelting facility. Applied Geochemistry. 2018(89), 255–264. doi: 10.1016/j.apgeochem.2017.12.011.
25. USEPA. Method 6010D (SW-846): Inductively Coupled Plasma-Atomic Emission Spectrometry, Revision 4; U.S. Environmental Protection Agency: Washington, D.C., 2014.
26. USEPA. Risk Assessment Guidance for Superfund. Human Health Evaluation Manual (Part A), Vol. 1; U.S. Environmental Protection Agency: Washington, D.C., 1989.
27. Myers R.A., Gyimah E., Gbemadu K., Osei B., Akoto O., 2023. Appraising groundwater quality and the associated health risks of heavy metal contamination at Suame magazine. Scientific African. 21, e01794. doi: 10.1016/j.sciaf.2023.e01794.
28. Edokpayi J.N., Enitan A.M., Mutileni N., Odiyo J.O., 2018. Evaluation of water quality and human risk assessment due to heavy metals in groundwater around Muledane area of Vhembe District, Limpopo Province, South Africa. Edokpayi et al. Chemistry Central Journal. 2018(2), 1-16. doi :10.1186/s13065-017-0369-y.
29. USEPA. Exposure factors handbook 2011 edition (final report). https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=236 252 (Accessed Dec 10, 2024).
30. Guo Y., Huang M., You W., Luxiang Cai L., Yong Hong Y., Xiao Q., Zheng X., Lin R., 2020. Spatial analysis and risk assessment of heavy metal pollution in rice in Fujian Province, China. Frontiers in Environmental Science. 2020(10), 82340. doi: 10.3389/fenvs.2022.1082340.
31. Akoto O., Samuel A., Gladys L., Sarah O.A.A., Apau J., Opoku F., 2022. Assessment of groundwater quality from some hostels around Kwame Nkrumah University of Science and Technology. Scientific African. 2022(17), e01361. doi: 10.1016/j.sciaf.2022.e01361.
32. Adimalla N., 2019. Heavy metals contamination in urban surface soils of Medak province, India, and its risk assessment and spatial distribution. Environ Geochem Health. 2020(42), 59–75.
33. USEPA. Integrated Risk Information System (IRIS); U.S. Environmental Protection Agency: Washington, D.C., USA, 2010.
34. Yin S., Feng C., Li Y., Yin L., Shen Z., 2015. Heavy metal pollution in the surface water of the Yangtze Estuary: a 5-year follow-up study. Chemosphere. 2015(138), 718–725. doi: 10.1016/j.chemosphere.2015.07.060.
35. Hasan M.F., Nur-E-Alam M., Salam M.A., Rahman H., Paul S.C., Rak A.E., Ambade B., Towfiqul Islam A.R.M., 2021. Health Risk and Water Quality Assessment of Surface Water in an Urban River of Bangladesh. Sustainability. 13(12), 6832. doi: 10.3390/su13126832.
36. Wang K., Aji D., Li P., Hu C., 2024. Characterization of heavy metal contamination in wetland sediments of Bosten lake and evaluation of potential ecological risk. Frontiers in Environmental Science. 2024(12), 1398849.
37. Mohanty S., Nayak R.K., Jena B., Padhan K., Mohapatra K.K., Sahoo S.K., Dash P.K., Das J., Behera S.K., Sahu A., Nayak J.K., Padhan S., Datta D., 2023. Heavy metal contamination in rice, pulses, and vegetables from CKDu-endemic areas in Cuttack district, India: a health risk assessment. Front. Environ. Sci. 2023(11), 1248373. doi: :10.3389/fenvs.2023.1248373.
38. Haque R.M., Ali M.M., Ahmed W., Rahman M.M., 2022. Assessment of metal(loid)s pollution in water and sediment from an urban river in Bangladesh: An ecological and health risk appraisals. Case Studies in Chemical and Environmental Engineering. 2022(6), 100272.
39. Abdullah N.H., Kean O.B., Hirmizi M.N., Yusoff N., Sabarudin A.R.N.M., 2020. Method validation of heavy metals determination in traditional herbal tablet, capsule and liquid by graphite furnace atomic absorption spectrometer and flow injection for atomic spectroscopy hydride system. Asian Journal Of Pharmacognosy. 4(3), 37-45.
40. Mwakisunga B., Pratap H.B., Machiwa J.F., Stephano F., 2021. Heavy Metal Contamination and Potential Ecological Risks in Surface Sediments along Dar es Salaam Harbour Channel. Tanzania Journal of Science. 47(5), 1606-1621. doi: 10.1016/j.marpolbul.2016.09.038. doi:10.4314/tjs.v47i5.11.
41. AOAC international. AOAC Guidelines for Single Laboratory Validation of Chemical Methods for Dietary Supplements and Botanicals. https://s27415.pcdn.co/wp-content/uploads/2020/01/64ER20-7/Validation_Methods/d-AOAC_Guidelines_For_Single_Laboratory_Validation_Dietary_Supplements_and_Botanicals.pdf (Accessed Dec 8, 2024).
42. Khodami S., Surif M., Omar W.M.W., Daryanabard R., 2017. Assessment of heavy metal pollution in surface sediments of the Bayan Lepas area, Penang, Malaysia. Marine Pollution Bulletin. 2017(1), 615–622. doi: 10.1016/j.marpolbul.2016.09.038.
43. Spencer K.L., MacLeod C.L., 2002. Distribution and partitioning of heavy metals in estuarine sediment cores and implications for the use of sediment quality standards. Hydrology and Earth System Sciences. 6(6), 989-998. doi : 10.5194/hess-6-989-2002.
44. Kubier A., Hamer K., Pichler T., 2019. Cadmium Background Levels in Groundwater in an Area Dominated by Agriculture. Integrated Environmental Assessment and Management. 16(1), 103-113. doi: 10.1002/ieam.4198.
45. Lin M., Gui H., Peng W., Chen S., 2014. Heavy Metals Characteristics in Deep Groundwater of Coal Mining Area, Northern Anhui Province. An Interdisciplinary Response to Mine Water Challenges. 9(319), 171-177.
46. USEPA. National Primary Drinking Water Regulations. https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations (Accessed Dec 12, 2024).
47. USEPA. Technical Factsheet on: NICKEL. https://archive.epa.gov/water/archive/web/pdf/archived-technical-fact-sheet-on-nickel.pdf (Accessed Dec 13, 2024).
48. Tangkan S., Phanthasa S., 2024. Health Risk and Contamination Assessment of Heavy Metals in Groundwater around Municipal Landfill, Ayutthaya Province. Huachiew Chalermprakiet Science and Technology Journal. 10(2), 82-97.
49. National Oceanic and Atmospheric Administration. screening quick reference tables. https://www.nrc.gov/docs/ML0720/ ML072040354.pdf (Accessed Dec 13, 2024).
50. Eziz M., Sidikjan N., Zhong Q., Rixit A., Li X., 2023. Distribution, pollution levels, and health risk assessment of heavy metals in groundwater in the main pepper production area of China. De Gruyter. 2023(15), 20220491. doi: 10.1515/geo-2022-0491.
51. Ishtiaq M., Khan M.J., Khan S.A., Ghani J., Ullah Z., Nawab J., Alrefaei A.F., Almutairi M.H., Alharbi S.N., 2024. Potentially harmful elements and health risk assessment in groundwater of urban industrial areas. Frontiers in Environmental Science. 2024(12), 1332965. doi: 10.3389/fenvs.2024.1332965.
52. Mikongoti S.B., Jeremiah J.M., Kaunga D.L., 2023. Investigation of Heavy Metal Composition and Associated Health Risks from Selected Groundwater Wells in Temeke, Dar-es-Salaam. Tanzania Journal of Engineering and Technology. 42(4), 58 - 74. doi: 10.52339/tjet.v42i4.849.
53. Perumal M., Velusamy S.G., Subramanian M., Velmurugan P.M., Raj T.N., Reddy M.S., 2022. Heavy metal contamination and the assessment of health risks in groundwater in Arani industrial zones in Southern India. Arabian Journal of Geosciences. 2022(15), 948. doi: 10.1007/s12517-022-10223-1.
54. Ullah Z., Rashid A., Ghani J., Nawab J., Zeng X.C., Shah M., Alrefaei A.F., Kamel A., Aleya L., Abdel-Daim M.M., Iqbal J., 2022. Groundwater contamination through potentially harmful metals and its implications in groundwater management. Frontiers in Environmental Science. 2022(10), 1021596. doi: 10.3389/fenvs.2022.1021596.
55. Rahman M.A.T.M.T., Paul M., Bhoumik N., Hassan M., Alam M.K., Aktar Z., 2020. Heavy metal pollution assessment in the groundwater of the Meghna Ghat industrial area, Bangladesh, by using water pollution indices approach. Applied Water Science. 2020(10), 186. doi: 10.1007/s13201-020-01266-4.
56. Neporozhniaia I., Snetkova I., 2021. Correlation analysis of heavy metals content in bottom sediments of the shallow zone Sheksninskaya spur of the Rybinsk reservoir in the city of Cherepovets (Russia, Vologda oblast), E3S Web of Conferences 265. 2021(265), 02017. doi: 10.1051/e3sconf/202126502017.
57. Raja V., Lakshmi R.V., Sekar C.P., Chidambaram S., Neelakantan M.A., 2021. Health Risk Assessment of Heavy Metals in Groundwater of Industrial Township Virudhunagar, Tamil Nadu, India. Archives of Environmental Contamination and Toxicology. 2021(80), 144–163. doi: 10.1007/s00244-020-00795-y.
58. Qu L., Huang H., Xia F., Liu Y., Dahlgren R.A., Zhang M., Mei K., 2018. Risk analysis of heavy metal concentration in surface waters across the rural-urban interface of the Wen-Rui Tang River, China. Environmental Pollution. 2018(237), 639-649. doi: 10.1016/j.envpol.2018.02.020.
59. Government of Canada. Guidance on Heavy Metal Impurities in Cosmetics. https:// www. canada.ca/en/health-canada/ services/ consumer-product-safety/reports-publications/industry-professionals/guidance-heavy-metal-impurities-cosmetics.html (Accessed Dec 14, 2024).
60. Chavatte L., Juan M., Mounicou S., Noblesse E.L., Pays K., Nizard C., Bulteau A.L., 2020. Elemental and molecular imaging of human full thickness skin after exposure to heavy metals. 12(10), 1555-1562.
61. Briffa J., Sinagra E., Blundell R., 2020. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon. 2020(6), e04691. doi: 10.1016/j.heliyon.2020.e04691.
62. Chen, Q. Y.; Brocato, J.; Laulicht, F.; Costa, M. Mechanisms of Nickel Carcinogenesis. In Essential and Non-Essential Metals. Molecular and Integrative Toxicology; Mudipalli, A., Zelikoff, J. T., Eds.; Springer International Publishing AG: New York, 2017. pp. 181–197.
63. Genchi G., Carocci A., Lauria G., Sinicropi M.S., Catalano A., 2020. Nickel: Human Health and Environmental Toxicology. International Journal of Environmental Research and Public Health. 17(3), 679. doi: 10.3390/ijerph17030679.
64. World Health Organization. Exposure to lead: a major public health concern. https://iris.who.int/bitstream/handle/10665/ 372293/ 9789240078130-eng.pdf?sequence=1 (Accessed Dec 16, 2024).
65. Liao L.M., Friesen M.C., Xiang Y.B., Cai H., Koh D.H., Ji B.T., Yang G., Li H.L., Locke S.J., Rothman N., Zheng W., Gao Y.T., Shu X.O., Purdue M.P., 2016. Occupational Lead Exposure and Associations with Selected Cancers:The Shanghai Men’s and Women’s Health Study Cohorts. Environmental Health Perspectives. 2016(124), 97-103. doi: 10.1289/ehp.1408171.
66. Kasmi S., Moser L., Gonvers S., Dormond O., Demartines N., Labgaa I., 2023. Carcinogenic efect of arsenic in digestive cancers: a systematic review. Environmental Health. 2023(22), 36. doi: 10.1186/s12940-023-00988-7.
67. Canadian Environmental Protection Act. Nickel and its Compounds, 1st ed., National printers(Ottawa) inc.: Canada, 1994.
68. Hashim M.A., Mukhopadhyay S., Sahu J.N., Sengupta B., 2011. Remediation technologies for heavy metal contaminated groundwater. Journal of Environmental Management. 2011(92), 2355-2388. doi: 10.1016/j.jenvman.2011.06.009.
69. Andabili N.R., Safaripour M., 2021. Pollution Assessment of Trace Metals in Ground Waters (Case Study: Meshgin Shahr County). Journal of Chemical Health Risks. 11(4), 375-382. doi: 10.22034/jchr.2020.1902942.1150.