Phytochemical Composition of Ethanol Extract of ๐๐ณ๐บ๐ฐ๐ฑ๐ฉ๐บ๐ญ๐ญ๐ถ๐ฎ ๐ฑ๐ช๐ฏ๐ฏ๐ข๐ต๐ถ๐ฎ leaves (EEBP) with its Effects on Haematopoietic Indices and Bone Marrow Histology of Cadmium-intoxicated Rats
Subject Areas : Journal of Chemical Health RisksDoris Akachukwu 1 * , Charles N. Chukwu 2 , Philippa C. Ojimelukwe 3 , Anthony C.C. Egbuonu 4 , Inemesit C. Ubiom 5 , Rosemary Izunwanne Uchegbu 6
1 - Department of Biochemistry, College of Natural Sciences, Michael Okpara University of Agriculture, Umudike, Nigeria
2 - Department of Biochemistry, College of Natural Sciences, Michael Okpara University of Agriculture, Umudike, Abia State, Nigeria
3 - Department of Food Science and Technology, College of Food Science and Technology, Michael Okpara University of Agriculture, Umudike, Nigeria
4 - Department of Biochemistry, College of Natural Sciences, Michael Okpara University of Agriculture, Umudike, Abia State, Nigeria
5 - Department of Biochemistry, Faculty of Sciences, University of Uyo, Uyo, Nigeria
6 - Department of Chemistry, Alvan Ikoku Federal College of Education, Owerri, Imo State, Nigeria
Keywords: Bone marrow, 𝘉𝘳𝘺𝘰𝘱𝘩𝘺𝘭𝘭𝘶𝘮 𝘱𝘪𝘯𝘯𝘢𝘵𝘶𝘮, Cadmium-challenged, GC-MS, Haematology, Histology,
Abstract :
Cadmium intoxication may arise from environmental pollution and cause bone and nervous system disorders. The phytochemical composition of ethanol extract of Bryophyllum pinnatum leaves (EEBP) with its effects on haematopoietic indices and bone marrow histology of cadmium-intoxicated rats was investigated. Twenty-four male albino rats were grouped for four treatments: Group 1 - normal control, Group 2 - 5 mg kg-1 bodyweight CdCl2,Groups 3 and 5 - 200 and 400 mg kg-1 body weight EEBP, while Groups 4 and 6 received 5 mg kg-1 bodyweight CdCl2, and treated with 200 and 400 mg kg-1 bodyweight EEBP respectively for 14 days. Feed and water were given ad libitum. Six bioactive compounds were obtained with 2H-Benzocyclohepten-2-one, decahydro-9a-methyl-, trans-13-octadecanoic acid methyl ester (35.81%) being the most abundant. The extract-treated groups showed a significant increase in haemoglobin (from 10.61 to 10.78 mmol L-1), packed cell volume (41.75%), red (6.36-6.42 × 106 mm3), and total white blood cells counts (17.30-19.25 × 106 mm3). The cadmium-intoxicated groups treated with 200 and 400 mg kg-1 body weight of EEBP showed a mild reduction in progenitor cells in the bone marrow. The results suggest that EEBP possesses potent bioactive compounds and nutrients that could improve hematological properties and attenuate bone marrow degeneration in cadmium-intoxicated rats.
1. Rahimzadeh M.R., Rahimzadeh M.R., Kazemi S., Moghadamnia A., 2017. Cadmium toxicity and treatment: An update. Caspian J Intern Med. 8(3), 135-145.
2. Demir H., Kanter M., Coskun O., Uz Y.H., Koc A., Yildiz A., 2006. Effect of black cumin (Nigella sativa) on heart rate, some hematological values, and pancreatic ฮฒ-cell damage in cadmium-treated rats. Biol Trace Elem Res. 110(2), 151-162.
3. Singh P., Chaudhary S., Patni A., 2007. Effect of cadmium chloride induced genotoxicity in bone marrow chromosomes of swiss albino mice and subsequent protective effects of Emblica officinalis and vitamin C. J Herb Med Toxicol. 1(2), 67-71.
4. Ercal N., Gurer-Orhan H., Aykin-Burns N., 2001. Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. Curr Top Med Chem. 1(6), 529-539.
5. El-Boshy M.E., Risha E.F., Abdelhamid F.M., Mubarak M.S., Hadda T.B., 2015. Protective effects of selenium against cadmium induced hematological disturbances, immunosuppressive, oxidative stress and hepatorenal damage in rats. J Trace Elem Med Bio. 29, 104-110.
6. Kocak M., 2004. Kronik kadmiyum toksisites in hemostatik sisteme etkileri. Ankara Saฤ Bil Enst (Doctoral dissertation).
7. Bubujuk S.P., Bojat N.C., ฤjeliฤ N., S., 2013. The effect of different acute concentrations of cadmium chloride on the frequency of micronuclei in AO rats. Genetika. 45(3), 727-736.
8. Horiguchi H., Oguma E., Kayama F., 2011. Cadmium induces anemia through interdependent progress of hemolysis, body iron accumulation, and insufficient erythropoietin production in rats. Toxicol Sci. 122(1), 198โ210.
9. Aprioku J.S., Igbe I., 2017. Effects of aqueous Bryophyllum pinnatum leaf extract on hematological, renal and sperm indices in Wistar rats. Indian J Pharm Sci. 79(4), 521-526.
10. Ghasi S., Egwuibe C., Achukwu P.U., 2009. Assessment of the medical benefit in the folkloric use of BryophyllumPinnatum leaf among the Igbos of Nigeria for the treatment of hypertension. Afr J Pharmacy Pharmacol. 5(1), 83-92.
11. Afzal M., Gupta G., Kazmi I., Rahman M., Afzal O., Alam J., Hakeem K.R., Pravez M., Gupta R., Anwar F., 2012. Antiinflammatory and analgesic potential of a novel steroidal derivative from Bryophyllum pinnatum. Fitoterapia. 83, 853-858.
12. Ojewole J.A.O. 2002. Antihypertensive properties of Bryophyllum pinnatum (Lam.) Oken leaf extracts. Am J Hypertens. 15(4), A34-A39.
13. Almeida A.P., Da Silva S.A.G., Souza M.L., Lima L.M., Rossi-Bergmann B., de Moraes V.L., Costa S.S., 2000. Isolation and chemical analysis of a fatty acid fraction of Kalanchoe pinnata with a potent lymphocyte suppressive activity. Planta Med. 66(2), 134-137.
14. Supratman U., Fujita T., Akiyama K., Hayashi H., Murakami A., Sakai H., Koshimizu K., Ohigashi H., 2001. Anti-tumor Promoting Activity of Bufadienolides from Kalanchoe pinnata and K. daigremontianaร butiflora. Biosci Biotechnol Biochem. 65(4), 947-949.
15. Asiedu-Gyekye I.J., Antwi D.A., Bugyei K.A., 2012. Comparative study of two Kalanchoe species: Total flavonoid and phenolic contents and antioxidant properties. AJPAC. 6(5), 65-73.
16. Okwu D.E., Josiah C., 2006. Evaluation of the chemical composition of two Nigerian medicinal plants. Afr J Biotech. 5, 357-361.
17. Cao H., Xia J., Xu D., Lu B., Chen G., 2005. The separation and identification of the flavonoids from the leaves of Bryophyllum pinnatum. J Chin Med Mater. 28(11), 988-990.
18. Schalm O.W., Jain N.C., Carol E.J., Veterinary Hematology 3rd ed., Lea and Febiger: Philadelphia, USA, 1975. pp. 1-13.
19. Ochei J.O., Kolhatkar A.A., 2000. Medical laboratory science: theory and practice. McGraw Hill Education.
20. Brar R.S., Sandhu H.S., Singh A., Veterinary Clinical Diagnosis by Laboratory Methods. 1st ed. India: Kaylani Publishers, 2000. pp. 29-150
21. Bancroft J.D., Stevens A. 1990. Theory and Practice of Histological Techniques. Edinburgh, London: Churchill Livingstone, pg. 86.
22. Al Amery S.F., Al Garaawi N.L., 2020. Phytochemical profile and antifungal activity of stems and leaves methanol extract from the Juncus maritimus Linn. Juncaceae family against some dermatophytes fungi. In: AIP Conference Proceedings. 2290(1), 020-034.
23. Kamaruding N.A., Ismail N., Sokry N., 2020. Identification of antibacterial activity with bioactive compounds from selected marine sponges. Pharmacogn J. 12(3), 493-502.
24. Lotfy W.A., Hassan S.W.M., Abd El-Aal A.A., 2019. Enhanced production of di-(2-ethylhexyl) phthalate (DEHP) by Bacillus subtilis AD35 using response surface methodology (RSM). Biotechnol Biotechnol Equip. 33(1), 1085-1096.
25. El-Sayed M.H., 2012. Di-(2-ethylhexyl) Phthalate, a major bioactive metabolite with antimicrobial and cytotoxic activity isolated from the culture filtrate of newly isolated soil Streptomyces (Streptomyces mirabilis strain NSQu-25). World Appl Sci J. 20(9), 1202-1212.
26. Kumari L., Mazumder A., Pandey D. 2019. Synthesis and biological potentials of quinoline analogues: A review of literature. Mini-Rev Org Chem. 16(7), 653-688.
27. Kฤฑsadere ฤฐ., Aydฤฑn M.F., รndaฤ ฤฐ., 2021. Partial protective effects of melatonin on cadmium-induced changes in hematological characteristics in rats. Biotech Histochem. 97(3), 1-7.
28. Mackova N.O., Lenikova S., Fedorocko P., Brezani P., Fedorockova A., 1996. Effects of cadmium on haemopoiesis in irradiated and non-irradiated mice: II. Relationship to the number of circulating blood cells and haemopoiesis. Physiol Res. 45, 101-106.
29. NagoorMeeran M.F., Javed H., Al Taee H., 2017. Pharmacological properties and molecular mechanisms of thymol: prospects for its therapeutic potential and pharmaceutical development. Front Pharmacol. 8, 380.
30. Wojdyลo A., Oszmiaลski J., Czemerys R., 2007. Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chem. 105(3), 940-949.
31. Travlos G.S., 2006. Normal structure, function, and histology of the bone marrow. Toxicol Pathol. 34(5), 548-565.
32. Horiguchi H., Sato M., Konno N., 1996. Long-term cadmium exposure induces anemia in rats through hypoproduction of erythropoietin in the kidneys. Arch Toxicol. 71, 11- 19.
33. Ufelle S.A., Ukaejiofo E.O., Neboh E.E., 2011. The Effect of Crude Methanolic Leaf Extract of Bryophyllum pinnatum on Some Haematological Parameters in Wistar Rats. Asian J Med Sci. 3(3), 121-124.
34. Okwu D.E. 2004. Phytochemicals and vitamin content of indigenous spices of Southeastern Nigeria. J Sustain Agric Environ. 6(1), 30- 37.
35. Ofokansi K.C., Esimone C.O., Anele C.R. 2005. Evaluation of the in vitro combined antibacterial effect of the leaf extracts of Bryophyllum pinnatum (Fam: Crassulaceae) and Ocimum gratissimum (Fam: Labiatae). Plant Prod Res J. 9, 23-27.
36. Mckenzie R.A., Franke F.O., Duster P.J., 1985. Flavonoids and Glycosides of Bryophyllum pinnatum. Antivet J. 64, 10-15.
37. Salahdeen H.M., Yemitan O.K., 2006. Neuropharmacological effects of aqueous leaf extract of Bryophyllum pinnatum in mice. Afr J Biomed Res. 9, 101-107.
38. Sani H.L., Malami I., Hassan S.W., 2015. Effects of standardized stem bark extract of Mangifera indica L. in wistar rats with 2, 4-dinitrophenylhydrazine-induced haemolyticanaemia. Pharmacogn J. 7(2), 89-96.
39. Obianime A.W., Aprioku J.S., Esomonu C.T., 2010. Antifertility effects of aqueous crude extract of Ocimum gratissimum L. leaves in male mice. J Med Plant Res. 4(9), 809-816.
40. Guyton A.C., Hall J.E., 2006. Medical Physiology (Textbook of Physiology Medical) (Jakarta: Book Medical Publishers EGC).
41. Zhang W.L., Fievez E., Cheu F. 2010. Anti-inflammatory effects of formosterol and ipratropium bromide against acute cadmium-induced pulmonary inflammation in rats. Eur J Pharmacol. 628, 171-178.
42. Okwu D.E., 2001. Evaluation of the chemical composition of indigenous spices and flavouring agents. Global J Pure Appl Sci.7, 455-459.
43. Almeida A.P., Da Silva S.A.G., Souza M.L.M., 2000. Isolation and chemical analysis of a fatty acid fraction of Kalanchoepinnata with a potent lymphocyte suppressive activity. Planta Med. 66(02), 134-137.
44. Pal S., Chaudhuri A.N., 1991. Studies on the anti-ulcer activity of a Bryophyllum pinnatum leaf extract in experimental animals. J Ethnopharmacol. 33(1-2), 97-102.
45. Staessen J.A., Roels H.A., Emelianov D., 1999. Environmental exposure to cadmium, forearm bone density, and risk of fractures: prospective population study. Lancet. 353(9159), 1140-1144.
46. Ma Y., Ran D., Shi X. 2021. Cadmium toxicity: A role in bone cell function and teeth development. Sci Total Environ. 144646.
47. Cruz E.A., Reuter S., Martin H., 2012. Kalanchoe pinnata inhibits mast cell activation and prevents allergic airway disease. Phytomedicine, 19(2), 115-121.