Spatial Distribution and Ecological Risk Assessment of Trace Metals in Surface Sediments of Lake Qarun Wetland, Egypt
Subject Areas :
Journal of Chemical Health Risks
Yasser El-Amier
1
*
,
Hala Fakhry
2
,
El-Sayed F. El-Halawany
3
,
Hatem K. Adday
4
1 - Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
2 - City of Scientific Research and Technological Application - New Borg El-Arab City – Alexandria, Egypt|National Institute of Oceanography and Fisheries (NIOF)
3 - Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
4 - Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
Received: 2021-06-12
Accepted : 2022-02-07
Published : 2023-09-01
Keywords:
Heavy metals,
Pollution indices,
Qarun Lake,
Ecological risk,
Abstract :
Wetlands sediments could be critical indicators to control contamination in the aquatic ecosystem. Qarun Lake is regarded as the third biggest lake in Egypt that is not related to any sea. Twelve georeferenced sediment samples were gathered in September, 2020 from the different locations. Five heavy metals (Pb, Cd, Cr, Ni, and Co) were measures in the sediments estimated by Atomic Absorption Spectrophotometer. Grain size and content of organic matters in the sediment were estimated on the basis of standard assays, as well as the contamination factor, geoaccumulation index, ecological risk factor, contamination degree and potential ecological risk index in the sediment. Data revealed that the average concentration could be arranged as Ni (27.36 mg k g-1) > Pb (18.28 mg k g-1) > Cr (15.31 mg k g-1) > Co (11.16 mg k g-1) > Cd (23.31 mg k g-1). Cd, Co and Pb were estimated to be in the range of EU (2002) and the US EPA (1999), while Co and Ni in the range of EU (2002). The ecological risk index (Er) of the studied elements in sediments of lake could be arranged as: Ni > Pb > Co > Cd > Cr. In addition, the highest-integrated potential ecological risk was on the south side of the lake, which is subjected to huge amounts of drainage water composed of organic and inorganic pollutants.
References:
Dash S., Borah S.S., Kalamdhad A.S., 2021. Heavy metal pollution and potential ecological risk assessment for surficial sediments of Deepor Beel. India Ecol Indic. 122, 107265.
2.Huang L., Rad S., Xu L., Gui L., Song X., Li Y., Wu Z., Chen Z., 2020. Heavy metals distribution, sources, and ecological risk assessment in Huixian Wetland, South China. Water. 12(2), 431.
3.Ramsar, 2007. Wetlands International Ramsar Sites Database; accessed. 15: 02.07.
Karaouzas I., Kapetanaki N., Mentzafou A., Kanellopoulos T.D., Skoulikidis N., 2020. Heavy Metal Contamination Status in Greek Surface Waters; a review with application and evaluation of pollution indices. Chemosphere. 128192.
Pienitz R., Walker I., Zeeb B., Smol J., Leavitt P., 1992. Biomonitoring past salinity changes in an athalassic subarctic lake. Int J Salt Lake Res. 1(2), 91-123.
6.Woolway R.I., Kraemer B.M., Lenters J.D., Merchant C.J., O’Reilly C.M., Sharma S., 2020. Global lake responses to climate change. Nat. Rev. Earth Environ. 1(8), 388-403. https://doi.org/10.1038/s43017-020-0067-5.
Okereafor U., Makhatha M., Mekuto L., Uche-Okereafor N., Sebola T., Mavumengwana V., 2020. Toxic metal implications on agricultural soils, plants, animals, aquatic life and human health. Int. Res. J. Pub. Environ. Public Health. 17(7), 2204. https://doi.org/10.3390/ijerph17072204.
Shaltout M., Azzazi M.F., 2015. Palaeobotanical Study on Soil Strata of Lake Qarun Shore since Helleno-Roman Period. J Earth Sci Eng. 5, 113-121.
Rasmy M., Estefan S.F., 1983. Geochemistry of saline minerals separated from Lake Qarun brine. Chem Geol. 40(3-4), 269-277. https://doi.org/10.1016/0009-2541(83)90033-5.
El-Shabrawy G.M., Dumont H.J., 2009. The Fayum depression and its lakes. The Nile, Springer, 95-124. https://doi.org/10.1007/978-1-4020-9726-3_6.
Barakat A.O., Khairy M., Aukaily I., 2013. Persistent organochlorine pesticide and PCB residues in surface sediments of Lake Qarun, a protected area of Egypt. Chemosphere. 90(9), 2467-2476. https://doi.org/10.1016/j.chemosphere.2012.11.012.
Hassan R.M., 2015. Ecosystem restoration using maintenance dredging in Lake Qarun, Egypt. Journal of American Science. 11(12), 55-65.
Dardir A., Wali A., 2009. Extraction of salts from Lake Quaroun, Egypt: environmental and economic impacts. Global NEST Journal. 11(1), 106-113. http://www.gnest.org/journal/Vol11_No....
Al-Afify A.M., Tahoun U., Abdo M., 2019. Water Quality Index and Microbial Assessment of Lake Qarun, El-Batts and El-Wadi Drains, Fayoum Province, Egypt. Egypt J Aqu Biol Fish. 23(1), 341-357. http://DOI:10.21608/ejabf.2019.28270.
Gohar M., 2002. Chemical studies on the precipitation and dissolution of some chemical elements in Qaroun Lake (Ph. D. thesis). Egypt: Fac Sci. AL-Azhar Univ. Cairo.
Wang H., Wang J., Liu R., Yu W., Shen Z., 2015. Spatial variation, environmental risk and biological hazard assessment of heavy metals in surface sediments of the Yangtze River estuary. Mar Pollut Bull. 93(1-2), 250-258. https://doi.org/10.1016/j.marpolbul.2015.01.026.
Oregioni B., Aston S., 1984. Determination of selected trace metals in marine sediments by flame/flameless atomic absorption spectrophotometer. IAEA Monaco Laboratory No. 38, Internal Report, Now cited in reference method in pollution studies.
Piper C., 1947. Soil and Plant Analysis. Interscience Publishers, Inc.: New York, NY, USA.
Muller G., 1969. Index of geoaccumulation in sediments of the Rhine River. Geo Journal. 2(108), 108–118.
Hakanson L., 1980. An ecological risk index for aquatic pollution control; a sedimentological approach. Water Research. 14, 975-1001. https://doi.org/10.1016/0043-1354(80)90143-8.
Caeiro S., Costa M.H., Ramos T.B., Fernandes F., Silveira N., Coimbra A., Medeiros G., Painho M., 2005. Assessing heavy metal contamination in Sado Estuary sediment: An index analysis approach. Ecol Indic. 5, 151–169. https://doi.org/10.1016/j.ecolind.2005.02.001.
Lu S., Bai S., 2010. Contamination and potential mobility assessment of heavy metals in urban soils of Hangzhou, China: Relationship with di_erent land uses. Environ Earth Sci. 60, 1481–1490. https://doi.org/10.1007/s12665-009-0283-2.
Kowalska J., Mazurek R., Gasiorek M., Setlak M., Zaleski T., Waroszewski J., 2016. Soil pollution indices conditioned by medieval metallurgical activity-A case study from Krakow (Poland). Environ Pollu. 218, 1023–1036. https://doi.org/10.1016/j.envpol.2016.08.053.
ESRI, 2012. ArcGIS Geostatistical Analyst Tutorial (ArcGIS®10.1). Printed in the USA.
Zahran M., El-Amier Y.A., Elnaggar A., Mohamed H., El-Alfy M.A., 2015. Assessment and distribution of heavy metals pollutants in Manzala Lake, Egypt. J Geo Environ Prot. 3(6), 107. 10.4236/gep.2015.36017.
El-Amier Y.A., Elnaggar A.A., El-Alfy M.A., 2017. Evaluation and mapping spatial distribution of bottom sediment heavy metal contamination in Burullus Lake, Egypt. Egypt J Basic Appl Sci. 4(1), 55-66. https://doi.org/10.1016/j.ejbas.2016.09.005.
El-Amier Y.A., El-Alfy M.A., Nofal M., 2018. Macrophytes potential for removal of heavy metals from aquatic ecosystem, Egypt: Using metal accumulation index (MAI). Plant Archives. 18(2), 2134-2144.
EU., 2002. Heavy Metals in Wastes, European Commission on Environment. FEB.; Available online: http://ec.europa.eu/environment/waste/studies/pdf/heavy_metalsreport.pdf.
USA EPA., 1999. Screening Level Ecological Risk Assessment Protocol for Hazardous Waste Combustion Facilities. Appendix E, Toxicity Reference Values, EPA530-D99-001C, USA EPA, Dallas, TX, USA; 3.
Engel M., Pacheco J., Noël V., Boye K., Fendorf S., 2021. Organic compounds alter the preference and rates of heavy metal adsorption on ferrihydrite. Sci. Total Environ. 750, p.141485, https://doi. org/10.1016/j. scitotenv.2020.141485.
Azzazy M.F., 2020. Plant bioindicators of pollution in Sadat City, Western Nile Delta, Egypt. PLoS ONE. 15(3), e0226315. https://doi.o rg/ 10.1371/ journal.pone. 0226315
Haider F., Liqun C., Coulter J., Cheema S., Wu J., Zhang R., Wenjun M., Farooq M., 2021. Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicol Environ Safety. 211, 111887. https://doi.org/10.1016/j.ecoenv.2020.111887.
El-Amier Y.A., El-Alfy M.A., Darwish D., Basiony A., Mohamedien L., El-Moselhy M., 2021. Distribution and Ecological Risk Assessment of Heavy Metals in Core Sediments of Burullus Lake, Egypt. Egypt J Aquatic Biol Fish. 25(1), 1041-1059. http://doi:10.21608/EJABF.2021.156793.
Kesler S., Simon A., 2015. Mineral Resources, Economics and the Environment. Cambridge University Press, Cambridge CB2 8BS, United Kingdom.
El-Alfy M.A., El-Amier Y.A., El-Eraky T.E., 2020. Land use/cover and eco-toxicity indices for identifying metal contamination in sediments of drains, Manzala Lake, Egypt. Heliyon, 6(1), 03177. https://doi.org /10.1016/j.heliyon.2020.e03177.
Mondol M.N., Chamon A.S., Faiz B., Elahi S.F., 2011. Seasonal variation of heavy metal concentrations in Water and plant samples around Tejgaon industrial Area of Bangladesh. J. Bangl. Acad. Sci. 35(1), 19-41. https://doi.org/10.3329/jbas.v35i1.7968.
Costa-Böddeker S., Hoelzmann P., de Stigter H.C., van Gaever P., Huy H.Đ., Smol J.P., Schwalb A., 2020. Heavy metal pollution in a reforested mangrove ecosystem (Can Gio Biosphere Reserve, Southern Vietnam): Effects of natural and anthropogenic stressors over a thirty-year history. Sci. Total Environ. 716, 137035. https://doi.org/10.1016/j.scitotenv.2020.137035.
Surour A.A., El-Kammar A.A., Arafa E.H., Korany H.M., 2003. Dahab stream sediments, southeastern Sinai, Egypt: a potential source of gold, magnetite and zircon. J. Geo. Expl. 77(1), 25-43. https://doi.org/10.1016/S0375-6742(02)00268-6.
El-Amier Y.A., Bonanomi G., Al-Rowaily S.L., Abd-ElGawad A.M., 2020. Ecological Risk Assessment of Heavy Metals along Three Main Drains in Nile Delta and Potential Phytoremediation by Macrophyte Plants. Plants, 9(7), 910. https://doi:10.3390/plants9070910.
Liu P., Zheng C., Wen M., Luo X., Wu Z., Liu Y., Chai S., Huang L., 2021. Ecological Risk Assessment and Contamination History of Heavy Metals in the Sediments of Chagan Lake, Northeast China. Water, 13(7), 894. https://doi.org/10.3390/w13070894.
Baran H.A., Gumus Kiral N., 2021. Assessment of heavy metal pollution of urban soils of Batman by multiple pollution indices. Int. J. Environ. Anal. Chem. 1-18. https://doi.org/10.1080/03067319.2021.1899166.
Pusceddu F.H., Choueri R.B., Pereira C.D.S., Cortez F.S., Santos D.R.A.D., Moreno B.B., Santos A.R., Rogero J.R., Cesar A., 2018. Environmental risk assessment of triclosan and ibuprofen in marine sediments using individual and sub-individual endpoints. Environ. Poll. 232, 274-283. https://doi.org/10.1016/j.envpol.2017.09.046.
El-Zeiny A.M., El Kafrawy S.B., Ahmed M.H., 2019. Geomatics based approach for assessing Qaroun Lake pollution. Egypt. J. Rem. Sen. Space Sci. 22(3), 279-296.
Maurya P., Kumari R., 2021. Toxic metals distribution, seasonal variations and environmental risk assessment in surficial sediment and mangrove plants (A. marina), Gulf of Kachchh (India). J. Haz. Mate. 413, 125345. https://doi.org/10.1016/j.jhazmat.2021.125345.
Xiao S.B., Liu D.F., Wang Y.C., Gao B., Wang L., Duan Y.J., 2011. Characteristics of heavy metal pollution in sediments at the Xiangxi Bay of Three Gorges Reservoir. Res. Environ. in Yangtze Basin, 20, 983–989.
Ciazela J., Siepak M., 2016. Environmental factors affecting soil metals near outlet roads in Poznań, Poland: impact of grain size, soil depth, and wind dispersal. Environ. Mon. Ass. 188, 323. https://doi.org /10.1007/s10661-016-5284-5.