Application of nanotechnology in optimizing solar water desalination systems: A step toward sustainable development based on renewable energy
Subject Areas :
1 -
Keywords: Solar Desalination, Nanotechnology, Nanoparticles, Renewable Energy, Nanofluids.,
Abstract :
This paper provides a comprehensive review of the role of nanotechnology in enhancing solar water desalination systems with a renewable energy-based approach, highlighting the need for continuous research to achieve more economical and sustainable technologies. Water desalination, as a fundamental solution to the global water crisis, has gained significant attention in recent years. Technological advancements particularly in the fields of nanotechnology and renewable energy, have opened new path for the development of sustainable and cost-effective water desalination units. The use of nanomaterials and nanofluids in distillation and filtration systems enhances operational efficiency, reduces dependency on climatic conditions, and improves overall process performance. On the other hand, the utilization of renewable energy sources such as solar, wind, geothermal, and biomass presents an effective alternative to costly and polluting fossil fuels. Specifically, nanofluids play a crucial role in optimizing solar distillation units, and nanoengineered membranes with nanoporous structures have demonstrated promising capabilities in salt removal and freshwater production. Despite these encouraging achievements, challenges such as the gradual decline in membrane performance, operational costs, and energy consumption persist
[1] Mirzaee M, Mohebbi T, Hamedanian M. Nanomaterials in the production of green hydrogen: Technical perspectives on the selection of nanomaterials, characteristics, production methods, and commercial applications. Journal of Applied Research in Chemistry. 2025;18(4):1-16. doi: 10.30495/JACR1.1403.1125887
[2] Mirzaee M, Mohebbi T. A Review of the application of nanomaterials in biomass conversion to biofuel. The Application of Chemistry in Environment. 2024;15(58):27-46.
[3] Pourkhalil M, Rashidi A, Mahmoudabadi ZS, Mirzaee M, Babakhani EG, Esmaeili M, et al. Catalytic reduction of SO2 to elemental sulfur with methane over CuOx/γ-Al2O3 catalysts. Scientific Reports. 2025;15(1):5907. doi: org/ 10.1038/s41598-025-86972-2
[4] Mirzaee M, Rezaei Abadchi M. Aerogels: A new generation of high-temperature thermal insulators for power plant applications. Advanced Materials and New Coatings. 2024;12(47):300-22. doi: org/10.22034/amnc.2025.479068.1272
[5] Mohebbi T, Mirzaee M, Hamadanian M. Properties of MXene and its synthesis methods. Advanced Materials and New Coatings. 2024;12(45):1-22. doi: org/ 10.22034/amnc.2023.412789.1249
[6] Mirzaee M, Mohebbi T, Hamadanian Khozani M, Golmohammad M. A Review of anti-soiling coatings for improving the performance of photovoltaic panels. Advanced Materials and New Coatings. 2024;12(47):224-44. doi: org/10.22034/amnc.2024.454505.1264
[7] Mirzaee M, Rezaei Abadchi M, Rashidi A. A Review of the application of two-dimensional nanosheets as a reinforcement to increase the corrosion resistance of polymer coatings. Journal of Studies in Color World. 2023;13(2):95-132. doi: org/ 20.1001.1.22517278.1402.13.2.1.5
[8] Mirzaee M, Mohebbi T. A review of anti-corrosion and erosion protective coatings in offshore wind power devices. Journal of Studies in Color World. 2024;14(2):133-59. doi: org/10.30509/JSCW.2024.82001
[9] Abdi N, Rashidi A, Samipoorgiri M, Mirzaee M, Anvari A, Yousefpour A. Nano-dendritic growth by electrodeposition method for improvement of heat transfer in plate and frame heat exchangers. Applied Thermal Engineering. 2024;257:124260. doi: org/10.1016/j.applthermaleng.2024.124260
[10] Mirzaee M, Abdadchi MR, Rashidi A. Nanofluids in transformer insulation: Preparation, performance, and future prospects. Chemistry and Nanochemistry. 2025;3(3):70-94. doi: org/10.71508/crn.2024.140310261196581
[11] Alshahrani AA, Algamdi MS, Alsohaimi IH, Nghiem LD, Tu KL, Al-Rawajfeh AE, in het Panhuis M. The rejection of mono-and di-valent ions from aquatic environment by MWNT/chitosan buckypaper composite membranes: Influences of chitosan concentrations. Separation and Purification Technology. 2020;234:116088. doi: org/10.1016/j.seppur.2019.116088
[12] Nurkhamidah S, Rahmawati Y, Taufany F, Merta IMPA, Putra DDD, Woo EM. Effect of silica particle size in cellulose membrane for desalination process. AIP Conference Proceedings. 2015;1699(1):020019. doi: org/ 10.1063/1.4938373
[13] Lee J-G, Kim W-S, Choi J-S, Ghaffour N, Kim Y-D. Dynamic solar-powered multi-stage direct contact membrane distillation system: Concept design, modeling and simulation. Desalination. 2018;435:278-92. doi: org/ 10.1016/j.desal.2017.04.008
[14] Oviroh PO, Akbarzadeh R, Jen T-C. Biomimetic membrane simulation for water desalination. In: Proceedings of ASME International Mechanical Engineering Congress and Exposition. Volume 10: Micro- and Nano-Systems Engineering and Packaging. Pittsburgh, Pennsylvania, USA: American Society of Mechanical Engineers.November 9–15, 2018. V010T13A003. ASME. doi: org/10.1115/imece2018-86664
[15] Ray SS, Chen S-S, Chang H-M, Thanh CND, Le HQ, Nguyen NC. Enhanced desalination using a three-layer OTMS based superhydrophobic membrane for a membrane distillation process. RSC Advances. 2018;8(18):9640-50. doi: org/ 10.1039/c8ra01043a
[16] Ng KC, Thu K, Kim Y, Chakraborty A, Amy G. Adsorption desalination: An emerging low-cost thermal desalination method. Desalination. 2013;308:161-79. doi: org/10.1016/j.desal.2012.07.030
[17] Mitra S, Srinivasan K, Kumar P, Murthy S, Dutta P. Solar driven adsorption desalination system. Energy Procedia. 2014;49:2261-9. doi: org/ 10.1016/j.egypro.2014.03.239
[18] Thu K, Chakraborty A, Saha BB, Ng KC. Thermo-physical properties of silica gel for adsorption desalination cycle. Applied Thermal Engineering. 2013;50(2):1596-602. doi: org/10.1016/j.applthermaleng.2011.09.038
[19] Thu K, Chakraborty A, Kim Y-D, Myat A, Saha BB, Ng KC. Numerical simulation and performance investigation of an advanced adsorption desalination cycle. Desalination. 2013;308:209-18. doi: org/10.1016/j.desal.2012.04.021
[20] Thu K, Kim Y-D, Shahzad MW, Saththasivam J, Ng KC. Performance investigation of an advanced multi-effect adsorption desalination (MEAD) cycle. Applied Energy. 2015;159:469-77. doi: org/ 10.1016/j.apenergy.2015.09.035
[21] Kabeel A, Omara Z, Essa F. Enhancement of modified solar still integrated with external condenser using nanofluids: an experimental approach. Energy Conversion and Management. 2014;78:493-8. doi: org/10.1016/j.enconman.2013.11.013
[22] Muraleedharan M, Singh H, Udayakumar M, Suresh S. Modified active solar distillation system employing directly absorbing Therminol 55–Al2O3 nano heat transfer fluid and Fresnel lens concentrator. Desalination. 2019;457:32-8. doi: org/10.1016/j.desal.2019.01.024
[23] Karthikeyan J, Selvaraj P, Nagaraj G. Day and night yield performance analysis of solar still for saline water using energetic materials with thermocol insulation. Materials Today: Proceedings. 2020;33:4848-51. doi: org/10.1016/j.matpr.2020.08.395
[24] Shanmugan S, Palani S, Janarthanan B. Productivity enhancement of solar still by PCM and Nanoparticles miscellaneous basin absorbing materials. Desalination. 2018;433:186-98. doi: org/10.1007/978-981-10-4286-7_70
[25] Thakur AK, Agarwal D, Khandelwal P, Dev S. Comparative study and yield productivity of nano-paint and nano-fluid used in a passive-type single basin solar still. In: Advances in smart grid and renewable energy: Proceedings of ETAEERE-2016. Singapore: Springer; 2017. doi: org/10.1007/978-981-10-4286-7_70
[26] Arora S, Singh HP, Sahota L, Arora MK, Arya R, Singh S, et al. Performance and cost analysis of photovoltaic thermal (PVT)-compound parabolic concentrator (CPC) collector integrated solar still using CNT-water based nanofluids. Desalination. 2020;495:114595. doi: org/10.1016/j.desal.2020.114595
[27] Sharshir SW, Eltawil MA, Algazzar AM, Sathyamurthy R, Kandeal A. Performance enhancement of stepped double slope solar still by using nanoparticles and linen wicks: energy, exergy and economic analysis. Applied Thermal Engineering. 2020;174:115278. doi: org/10.1016/j.applthermaleng.2020.115278
[28] Sahota L, Arora S, Singh HP, Sahoo G. Thermo-physical characteristics of passive double slope solar still loaded with MWCNTs and Al2O3-water based nanofluid. Materials Today: Proceedings. 2020;32:344-9. doi: org/10.1016/j.matpr.2020.01.600
[29] Sahota L, Tiwari G. Effect of Al2O3 nanoparticles on the performance of passive double slope solar still. Solar Energy. 2016;130:260-72. doi: org/10.1016/j.solener.2016.02.018
[30] Nazari S, Safarzadeh H, Bahiraei M. Performance improvement of a single slope solar still by employing thermoelectric cooling channel and copper oxide nanofluid: an experimental study. Journal of Cleaner Production. 2019;208:1041-52. doi: org/10.1016/j.jclepro.2018.10.194
[31] Bahiraei M, Nazari S, Moayedi H, Safarzadeh H. Using neural network optimized by imperialist competition method and genetic algorithm to predict water productivity of a nanofluid-based solar still equipped with thermoelectric modules. Powder Technology. 2020;366:571-86. doi: org/10.1016/j.powtec.2020.02.055
[32] Abdullah A, Essa F, Omara Z, Rashid Y, Hadj-Taieb L, Abdelaziz GB, et al. Rotating-drum solar still with enhanced evaporation and condensation techniques: Comprehensive study. Energy Conversion and Management. 2019;199:112024. doi: org/10.1016/j.enconman.2019.112024
[33] Abdullah A, Essa FA, Bacha HB, Omara Z. Improving the trays solar still performance using reflectors and phase change material with nanoparticles. Journal of Energy Storage. 2020;31:101744. doi: org/10.1016/j.est.2020.101744
[34] Arunkumar T, Wang J, Rufuss DDW, Denkenberger D, Kabeel A. Sensible desalting: Investigation of sensible thermal storage materials in solar stills. Journal of Energy Storage. 2020;32:101824. doi: org/10.1016/j.est.2020.101824
[35] Behura A, Gupta HK. Use of nanoparticle-embedded phase change material in solar still for productivity enhancement. Materials Today: Proceedings. 2021;45:3904-7. doi: org/10.1016/j.matpr.2020.06.285
[36] Shelare S, Belkhode P, Nikam KC, Yelamasetti B, Gajbhiye T. A payload based detail study on design and simulation of hexacopter drone. International Journal on Interactive Design and Manufacturing (IJIDeM). 2024;18(5):2675-92. doi: org/10.1007/s12008-023-01269-w
[37] Kabeel AE, Sathyamurthy R, Sharshir SW, Muthumanokar A, Panchal H, Prakash N, et al. Effect of water depth on a novel absorber plate of pyramid solar still coated with TiO2 nano black paint. Journal of cleaner production. 2019;213:185-91. doi: org/10.1016/j.jclepro.2018.12.185
[38] Rufuss DDW, Suganthi L, Iniyan S, Davies P. Effects of nanoparticle-enhanced phase change material (NPCM) on solar still productivity. Journal of Cleaner Production. 2018;192:9-29. doi: org/10.1016/j.jclepro.2018.04.201
[39] Thalib MM, Manokar AM, Essa FA, Vasimalai N, Sathyamurthy R, Garcia Marquez FP. Comparative study of tubular solar stills with phase change material and nano-enhanced phase change material. Energies. 2020;13(15):3989. doi: org/10.3390/en13153989
[40] Elango T, Kannan A, Murugavel KK. Performance study on single basin single slope solar still with different water nanofluids. Desalination. 2015;360:45-51. doi: org/10.1016/j.desal.2015.01.004
[41] Chen W, Zou C, Li X, Li L. Experimental investigation of SiC nanofluids for solar distillation system: Stability, optical properties and thermal conductivity with saline water-based fluid. International Journal of Heat and Mass Transfer. 2017;107:264-70. doi: org/10.1016/j.ijheatmasstransfer.2016.11.048
[42] Saleh SM, Soliman AM, Sharaf MA, Kale V, Gadgil B. Influence of solvent in the synthesis of nano-structured ZnO by hydrothermal method and their application in solar-still. Journal of Environmental Chemical Engineering. 2017;5(1):1219-26. doi: org/10.1016/j.jece.2017.02.004
[43] Balachandran GB, David PW, Mariappan RK, Kabeel AE, Athikesavan MM, Sathyamurthy R. Improvising the efficiency of single-sloped solar still using thermally conductive nano-ferric oxide. Environmental Science and Pollution Research. 2020;27:32191-204. doi: org/10.1007/s11356-019-06661-2
[44] Mahian O, Kianifar A, Heris SZ, Wen D, Sahin AZ, Wongwises S. Nanofluids effects on the evaporation rate in a solar still equipped with a heat exchanger. Nano Energy. 2017;36:134-55. doi: org/10.1016/j.nanoen.2017.04.025
[45] Zanganeh P, Goharrizi AS, Ayatollahi S, Feilizadeh M. Nano-coated condensation surfaces enhanced the productivity of the single-slope solar still by changing the condensation mechanism. Journal of Cleaner Production. 2020;265:121758. doi: org/10.1016/j.jclepro.2020.121758
[46] Zanganeh P, Goharrizi AS, Ayatollahi S, Feilizadeh M, Dashti H. Efficiency improvement of solar stills through wettability alteration of the condensation surface: An experimental study. Applied Energy. 2020;268:114923. doi: org/10.1016/j.apenergy.2020.114923
[47] Zanganeh P, Goharrizi AS, Ayatollahi S, Feilizadeh M. Productivity enhancement of solar stills by nano-coating of condensing surface. Desalination. 2019;454:1-9. doi: org/10.1016/j.desal.2018.12.007
[48] Parsa SM, Rahbar A, Koleini M, Javadi YD, Afrand M, Rostami S, et al. First approach on nanofluid-based solar still in high altitude for water desalination and solar water disinfection (SODIS). Desalination. 2020;491:114592. doi: org/10.1016/j.desal.2020.114592
[49] Parsa SM, Rahbar A, Koleini M, Aberoumand S, Afrand M, Amidpour M. A renewable energy-driven thermoelectric-utilized solar still with external condenser loaded by silver/nanofluid for simultaneously water disinfection and desalination. Desalination. 2020;480:114354. doi: org/10.1016/j.desal.2020.114354
[50] Shanmugan S, Essa F, Gorjian S, Kabeel A, Sathyamurthy R, Manokar AM. Experimental study on single slope single basin solar still using TiO2 nano layer for natural clean water invention. Journal of Energy Storage. 2020;30:101522. doi: org/ 10.1016/j.est.2020.101522
[51] Sahota L, Tiwari G. Energy matrices, enviroeconomic and exergoeconomic analysis of passive double slope solar still with water based nanofluids. Desalination. 2017;409:66-79. doi: org/10.1016/j.desal.2017.01.012
[52] Kabeel A, Sathyamurthy R, Manokar AM, Sharshir SW, Essa F, Elshiekh AH. Experimental study on tubular solar still using graphene oxide nanoparticles in phase change material (NPCM's) for fresh water production. Journal of Energy Storage. 2020;28:101204. doi: org/10.1016/j.est.2020.101204
[53] Teow YH, Mohammad AW. New generation nanomaterials for water desalination: A review. Desalination. 2019;451:2-17. doi: org/10.1016/j.desal.2017.11.041
[54] Dongre RS. Rationally fabricated nanomaterials for desalination and water purification. In: Kyzas GZ, Mitropoulos AC, editors. Novel Nanomaterials - Synthesis and Applications [Internet]. InTech; 2018. Available from: http://dx.doi.org/10.5772/intechopen.70149
[55] Daer S, Kharraz J, Giwa A, Hasan SW. Recent applications of nanomaterials in water desalination: A critical review and future opportunities. Desalination. 2015;367:37-48. doi: org/10.1016/j.desal.2015.03.030
[56] Yan Y, Yang H, Yi Z, Xian T, Li R, Wang X. Construction of Ag2S@ CaTiO3 heterostructure photocatalysts for enhanced photocatalytic degradation of dyes. Desalination and Water Treatment. 2019;170:349-60. doi: org/10.5004/dwt.2019.24747
[57] Yusoff N, Ho L-N, Ong S-A, Wong Y-S, Khalik W. Photocatalytic activity of zinc oxide (ZnO) synthesized through different methods. Desalination and Water Treatment. 2016;57(27):12496-507. doi: org/10.1080/19443994.2015.1054312
[58] Mahmoodi NM, Mokhtari-Shourijeh Z. Preparation of PVA-chitosan blend nanofiber and its dye removal ability from colored wastewater. Fibers and Polymers. 2015;16:1861-9. doi: org/10.1007/s12221-015-5371-1
[59] Zhao Q, Chen N, Zhao D, Lu X. Thermoresponsive magnetic nanoparticles for seawater desalination. ACS Applied Materials & Interfaces. 2013;5(21):11453-61. doi: org/10.1021/am403719s
[60] Mahdizadeh SJ, Goharshadi EK, Akhlamadi G. Seawater desalination using pillared graphene as a novel nano-membrane in reverse osmosis process: Nonequilibrium MD simulation study. Physical Chemistry Chemical Physics. 2018;20(34):22241-8. doi: org/10.1039/c8cp02820f
[61] Baek Y, Kim C, Seo DK, Kim T, Lee JS, Kim YH, et al. High performance and antifouling vertically aligned carbon nanotube membrane for water purification. Journal of Membrane Science. 2014;460:171-7. doi: org/10.1016/j.memsci.2014.02.042
[62] Porada S, Shrivastava A, Bukowska P, Biesheuvel P, Smith KC. Nickel hexacyanoferrate electrodes for continuous cation intercalation desalination of brackish water. Electrochimica Acta. 2017;255:369-78. doi: org/10.1016/j.electacta.2017.09.137
[63] Huang Y, Chen F, Guo L, Zhang J, Chen T, Yang HY. Low energy consumption dual-ion electrochemical deionization system using NaTi2(PO4)3-AgNPs electrodes. Desalination. 2019;451:241-7. doi: org/10.1016/j.desal.2018.02.006
[64] Xue Y, Xie J, He M, Liu M, Xu M, Ni W, et al. Porous and high-strength graphitic carbon/SiC three-dimensional electrode for capacitive deionization and fuel cell applications. Journal of Materials Chemistry A. 2018;6(39):19210-20. doi: org/10.1039/c8ta06657d
[65] Kim IS, Hwang CW, Kim YJ, Canlier A, Jeong KS, Hwang TS. Synthesis of polyketone-g-sodium styrene sulfonate cation exchange membrane via irradiation and its desalination properties. Macromolecular Research. 2017;25:1063-9. doi: org/10.1007/s13233-017-5145-2
[66] Muller KR. Electrochemically mediated removal of nitrate on granular activated carbon [dissertation]. [Riverside]: University of California; 2016.
[67] Huang Z-H, Zheng X, Lv W, Wang M, Yang Q-H, Kang F. Adsorption of lead (II) ions from aqueous solution on low-temperature exfoliated graphene nanosheets. Langmuir. 2011;27(12):7558-62. doi: org/10.1021/la200606r
[68] Jeon YS, Cheong SI, Rhim JW. Design shape of CDI cell applied with APSf and SPEEK and performance in MCDI. Macromolecular Research. 2017;25:712-21. doi: org/10.1007/s13233-017-5064-2
[69] Suss ME, Porada S, Sun X, Biesheuvel PM, Yoon J, Presser V. Water desalination via capacitive deionization: What is it and what can we expect from it? Energy & Environmental Science. 2015;8(8):2296-319. doi: org/10.1039/c5ee00519a
[70] Ahmad F, Khan SJ, Jamal Y, Kamran H, Ahsan A, Ahmad M, et al. Desalination of brackish water using capacitive deionization (CDI) technology. Desalination and Water Treatment. 2016;57(17):7659-66. doi: org/10.1080/19443994.2015.1037357
[71] Kabeel AE, Abdelgaied M, editors. Minimizing energy consumption in reverse osmosis desalination using renewable energy sources: A review. In: AIP Conference Proceedings; Melville (NY): AIP Publishing. 2019. doi: org/10.1063/1.5120148
[72] Elminshawy NA, Siddiqui FR, Sultan GI. Development of a desalination system driven by solar energy and low grade waste heat. Energy Conversion and Management. 2015;103:28-35. doi: org/10.1016/j.enconman.2015.06.035
[73] Wu L, Hu Y, Gao C. Optimum design of cogeneration for power and desalination to satisfy the demand of water and power. Desalination. 2013;324:111-7. doi: org/10.1016/j.desal.2013.06.006
[74] Mentis D, Karalis G, Zervos A, Howells M, Taliotis C, Bazilian M, et al. Desalination using renewable energy sources on the arid islands of South Aegean Sea. Energy. 2016;94:262-72. doi: org/10.1016/j.energy.2015.11.003
[75] Paul P, Al Tenaiji AK, Braimah N. A review of the water and energy sectors and the use of a nexus approach in Abu Dhabi. International journal of environmental research and public health. 2016;13(4):364. doi: org/10.3390/ijerph13040364
[76] Dhivagar R, Sundararaj S. A review on methods of productivity improvement in solar desalination. Applied Mechanics and Materials. 2018;877:414-29. doi: org/10.4028/www.scientific.net/amm.877.414
[77] Mirzaee M, yousefpour a, Mohebbi T. A review of methods for controlling and monitoring microbial corrosion in power plant cooling sections. Farayandno. 2024;19(85):20-36. doi: org/10.22034/farayandno.2024.2027039.1959
[78] Demir NM, Debik E, Ozkaya B, Coskun T. Comparison of microbial community structure in a biological nutrient removal process at various stages of operation. Desalination and Water Treatment. 2016;57(50):23675-85. doi: org/10.1080/19443994.2015.1137494
[79] Afsharnia M, Kianmehr M, Narooie MR, Mehrizi EA. Chemical oxygen demand and microbial inactivation in dairy wastewater treatment by solar photocatalyst process. Pollution Research. 2017;36(3):462-73. doi: org/10.1021/acs.langmuir.5c00454.s001
[80] Ramírez-Moreno M, Rodenas P, Aliaguilla M, Bosch-Jimenez P, Borràs E, Zamora P, et al. Comparative performance of microbial desalination cells using air diffusion and liquid cathode reactions: study of the salt removal and desalination efficiency. Frontiers in Energy Research. 2019;7:135. doi: org/10.3389/fenrg.2019.00135
[81] Sharshir SW, Peng G, Wu L, Yang N, Essa F, Elsheikh A, et al. Enhancing the solar still performance using nanofluids and glass cover cooling: experimental study. Applied thermal engineering. 2017;113:684-93. doi: org/10.1016/j.applthermaleng.2016.11.085
[82] Kabeel AE, Omara Z, Essa F. Numerical investigation of modified solar still using nanofluids and external condenser. Journal of the Taiwan Institute of Chemical Engineers. 2017;75:77-86. doi: org/10.1016/j.jtice.2017.01.017
[83] Sain MK, Kumawat G. Performance enhancement of single slope solar still using nano-particles mixed black paint. Adv Nanosci Technol Int J. 2015;1:55-65. doi: org/10.70528/ijlrp.v6.i6.1592
[84] Gupta B, Shankar P, Sharma R, Baredar P. Performance enhancement using nano particles in modified passive solar still. Procedia Technology. 2016;25:1209-16. doi: org/10.1016/j.protcy.2016.08.208
[85] World Bank. The role of desalination in an increasingly water-scarce world. Washington, DC: World Bank; 2019. doi:10.1596/31416
[86] Kabeel AE, Omara ZM, Essa F, Abdullah A, Arunkumar T, Sathyamurthy R. Augmentation of a solar still distillate yield via absorber plate coated with black nanoparticles. Alexandria Engineering Journal. 2017;56(4):433-8. doi: org/10.1016/j.aej.2017.08.014
[87] Youssef P, Al-Dadah R, Mahmoud S. Comparative analysis of desalination technologies. Energy Procedia. 2014;61:2604-7. doi: org/10.1016/j.egypro.2014.12.258
[88] Alsohaimi IH, Awad MI, Alshammari MS, Kassem MA. On the electrocatalytic reduction of CO2 using Cu-nanoparticles decorating Au electrode. Desalination and Water Treatment. 2020;184:225-31. doi: org/10.5004/dwt.2020.25373
[89] Gao L, Yoshikawa S, Iseri Y, Fujimori S, Kanae S. An economic assessment of the global potential for seawater desalination to 2050. Water. 2017;9(10):763. doi: org/10.3390/w9100763
[90] Shahzad MW, Burhan M, Son HS, Oh SJ, Ng KC. Desalination processes evaluation at common platform: a universal performance ratio (UPR) method. Applied Thermal Engineering. 2018;134:62-7. doi: org/10.1016/j.applthermaleng.2018.01.098
[91] Shahzad MW, Burhan M, Ghaffour N, Ng KC. A multi evaporator desalination system operated with thermocline energy for future sustainability. Desalination. 2018;435:268-77. doi: org/10.1016/j.desal.2017.04.013
[92] Sipahutar R, Bernas SM, Imanuddin MS. Renewable energy and hydropower utilization tendency worldwide. Renewable and Sustainable Energy Reviews. 2013;17:213-5. doi: org/ 10.1016/j.rser.2012.09.010
[93] Falkenberg LJ, Styan CA. The use of simulated whole effluents in toxicity assessments: A review of case studies from reverse osmosis desalination plants. Desalination. 2015;368:3-9. doi: org/10.1016/j.desal.2015.01.014