Preparation and structural and photoelectrochemical properties of titanium dioxide/zinc oxide composites
Subject Areas :Mahnaz Siahsahlan 1 , Sajedeh Mohammadiaref 2 * , Hamid Naghshara 3 , Rasoul َAzmayesh 4
1 - Condensed Matter, Faculty of Physics, University of Tabriz, Tabriz, Iran
2 - Condensed Matter, Faculty of Physics, University of Tabriz, Tabriz, Iran
3 - Condensed Matter, Faculty of Physics, University of Tabriz, Tabriz, Iran
4 - Condensed Matter, Faculty of Physics, University of Tabriz, Tabriz, Iran
Keywords: Water splitting, Photoelectrochemical properties, Solar hydrogen, Titanium dioxide/zinc oxide.,
Abstract :
: Four nanocomposite samples of titanium dioxide/zinc oxide with approximate volume percentages of 0, 3, 5, and 7 of zinc oxide were synthesized using the sol-gel method. The success of the syntheses was confirmed by X-ray diffraction patterns. Morphology of the prepared samples was studied by scanning electron microscope (SEM). Properties of the samples were investigated by using UV-Vis spectrometry and photoluminescence spectrometry. The obtained results indicated that adding zinc oxide to titanium dioxide significantly decreased its band gap energy and substantially improved the photoelectrochemical performance of the composites. The sample containing 5% by volume of zinc oxide exhibited the narrowest band gap energy (3.28 eV), the lowest photoluminescence spectrum intensity, and the lowest charge transfer resistance (80 kΩ). Additionally, this sample showed the highest stable current density (1.1 mA/cm²). Furthermore, the superior photoelectrochemical performance of this sample compared to the others confirmed its high efficiency
[ ] Nowotny J, Sorrell CC, Sheppard LR, Bak T. Solar-hydrogen: Environmentally safe fuel for the future. International journal of hydrogen energy. 2005;30(5):521-44. doi: org/10.1016/j.ijhydene.2004.06.012
[ ] Ziani A, Al-Shankiti I, Khan MA, Idriss H. Integrated photo-electrocatalytic (PEC) systems for water splitting to hydrogen and oxygen under concentrated sunlight: Effect of internal parameters on performance. Energy & Fuels. 2020;34(10):13179-85. doi: org/10.1021/acs.energyfuels.0c02481
[ ] Ge M, Li Q, Cao C, Huang J, Li S, Zhang S, Chen Z, Zhang K, Al‐Deyab SS, Lai Y. One‐dimensional TiO2 nanotube photocatalysts for solar water splitting. Advanced science. 2017;4(1):1600152. doi: org/10.1002/advs.201600152
[ ] Mora ES, Barojas EG, Rojas ER, González RS. Morphological, optical and photocatalytic properties of TiO2–Fe2O3 multilayers. Solar Energy Materials and Solar Cells. 2007;91(15-16):1412-5. doi: org/10.1016/j.solmat.2007.05.010
[ ] Muttaqin R, Pratiwi R, Dewi EL, Ibadurrohman M. Degradation of methylene blue-ciprofloxacin and hydrogen production simultaneously using combination of electrocoagulation and photocatalytic process with Fe-TiNTAs. International Journal of Hydrogen Energy. 2022;47(42):18272-84. doi: org/10.1016/j.ijhydene.2022.04.031
[ ] Zhu Z, Kao CT, Tang BH, Chang WC, Wu RJ. Efficient hydrogen production by photocatalytic water-splitting using Pt-doped TiO2 hollow spheres under visible light. Ceramics International. 2016;42(6):6749-54. doi: org/10.1016/j.ceramint.2016.01.047
[ ] Wang C, Hu QQ, Huang JQ, Deng ZH, Shi HL, Wu L, et al. Effective water splitting using N-doped TiO2 films: Role of preferred orientation on hydrogen production. International Journal of Hydrogen Energy. 2014;39(5):1967-71. doi: org/10.1016/j.ijhydene.2013.11.097
[ ] Meziane K, El Hichou A, El Hamidi A, Mansori M, Liba A, Almaggoussi A. On the sol pH and the structural, optical and electrical properties of ZnO thin films. Superlattices and Microstructures. 2016;93: 297-302. doi: org/10.1016/j.spmi.2016.03.041
[ ] Naseri N, Amiri M, Moshfegh AZ. Visible photoenhanced current–voltage characteristics of Au: TiO2 nanocomposite thin films as photoanodes. Journal of Physics D: Applied Physics. 2010;43(10):105405. doi: org/10.1088/0022-3727/43/10/105405
[ ] Tian J, Chen L, Dai J, Wang X, Yin Y, Wu P. Preparation and characterization of TiO2, ZnO, and TiO2/ZnO nanofilms via sol-gel process. Ceramics International. 2009;35(6):2261-70. doi: org/10.1016/j.ceramint.2008.12.010
[ ] Liao DL, Badour CA, Liao BQ. Preparation of nanosized TiO2/ZnO composite catalyst and its photocatalytic activity for degradation of methyl orange. Journal of Photochemistry and Photobiology A: Chemistry. 2008;194(1):11-9. doi: org/10.1016/j.jphotochem.2007.07.008
[12] Pérez-Larios A, Lopez R, Hernández-Gordillo A, Tzompantzi F, Gómez R, Torres-Guerra LM. Improved hydrogen production from water splitting using TiO2–ZnO mixed oxides photocatalysts. Fuel. 2012;100:139-43. doi: org/10.1016/j.fuel.2012.02.026
[13] AbuDakka M, Qurashi A, Hari P, Alam MW. Formamide driven synthesis of well-aligned ZnO nanorod arrays on glass substrate. Materials Science in Semiconductor Processing. 2010;13(2):115-8. doi: org/10.1016/j.mssp.2010.05.001
[14] Noh SY, Sun K, Choi C, Niu M, Yang M, Xu K, et al. Branched TiO2/Si nanostructures for enhanced photoelectrochemical water splitting. Nano Energy. 2013 May 1;2(3):351-60. doi: org/10.1016/j.nanoen.2012.10.010.
[15] de Brito JF, Tavella F, Genovese C, Ampelli C, Zanoni MV, Centi G, et al. Role of CuO in the modification of the photocatalytic water splitting behavior of TiO2 nanotube thin films. Applied Catalysis B: Environmental. 2018;224:136-45. doi.org/10.1016/j.apcatb.2017.09.071
[16] Wang P, Zhan S, Xia Y, Ma S, Zhou Q, Li Y. The fundamental role and mechanism of reduced graphene oxide in rGO/Pt-TiO2 nanocomposite for high-performance photocatalytic water splitting. Applied Catalysis B: Environmental. 2017;207:335-46. doi: org/10.1016/j.apcatb.2017.02.031
[17] Fazil M, Ahmad T. Pristine TiO2 and Sr-doped TiO2 nanostructures for enhanced photocatalytic and electrocatalytic water splitting applications. Catalysts. 2023;13(1):93. doi: org/10.3390/catal13010093
[18] Lee MG, Yang JW, Park H, Moon CW, Andoshe DM, Park J, et al. Crystal facet engineering of TiO2 nanostructures for enhancing photoelectrochemical water splitting with BiVO4 nanodots. Nano-micro letters. 2022 Dec;14(1):48. doi: org/10.1007/s40820-022-00795-8