Effect of the ionic liquid 1-butyl-3-methyl-imidazolium bromide as adjuvant on the formation of {PEG 600-potassium citrate} aqueous biphasic system at different temperatures
Subject Areas :
Sholeh Hamzehzadeh
1
,
Mostafa Abbasi
2
1 - Department of Physical Chemistry, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran
2 - Department of Physical Chemistry, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran
Received: 2020-11-09
Accepted : 2021-04-03
Published : 2021-11-22
Keywords:
Polyethylene glycol,
temperature,
Ionic liquid,
Aqueous biphasic system,
Potassium citrate,
Abstract :
Abstract: In biotechnology, separation, extraction, and purification of biomolecules using aqueous biphasic systems, as environmental and economic sustainable alternatives for conventional water-organic solvent extraction techniques, have always been the focus of great attention and examina-tion. One approach proposed by researchers is based on the use of ionic liquids (ILs) as adjuvants in ABS, making the capability of these systems for the extraction of biomolecules to be promoted. In this regard, this work is devoted to study the effect of IL 1-butyl-3-methyl imidazolium bromide ([C4C1im] Br) on the formation of ABS Composed of a polyethylene glycol (PEG) with molecular weight 600 and a biodegradable organic salt potassium citrate. For this purpose, the binodal curves and the liquid-liquid equilibrium (LLE) data of the studied ABS, along with the partition coeffi-cients of [C4C1im]Br were determined at two temperatures of 278.15 K and 318.15 K. The results obtained indicate that the ability of [C4C1im]Br to promote the formation of the studied ABS de-creases with increasing temperature, so that at 318.15 K, the addition of IL makes the formation of two-phase system more difficult. In addition, [C4C1im]Br displays the partition coefficients greater than one for all the compositions and temperatures studied, which increases with increasing TLL at a given temperature.
References:
Albertsson, P.-Å.; Nature 182, 709-711, 1958.
Albertsson, P.-Å.; “Partition of cell particles and macromolecules: separation and purification of biomolecules, cell organelles, membranes, and cells in aqueous polymer two-phase systems and their use in biochemical analysis and biotechnology”, Wiley, New York, 1986.
Walter, H.; Brooks, D.E.; Fisher, D.; “Partitioning In Aqueous Two–Phase System: Theory, Methods, Uses, And Applications To Biotechnology”, Academic Press, Toronto, 1985.
Zaslavsky, B.Y.; “Aqueous two-phase partitioning: physical chemistry and bioanalytical applications”, CRC Press, U.S., 1994.
Hatti-Kaul, R. (Ed.); “Aqueous two-phase systems: methods and protocols”, Humana Press, New Jersey, 2000.
Hatti-Kaul, R.; Mol. Biotechnol. 19, 269-277, 2001.
Pereira, J.F.; Lima, Á.S.; Freire, G.; Coutinho, J.A.; Green Chem. 12, 1661-1669, 2010.
Wilkes, J.S.; Green Chem. 4, 73-80, 2002.
Rogers, R.D.; Seddon, K.R.; Science 302, 792-793, 2003.
Zhang, S.; Sun, N.; He, X.; Lu, X.; Zhang, X.; J. Phys. Chem. Ref. Data 35, 1475-1517, 2006.
Gutowski, K.E.; Broker, G.A.; Willauer, H.D.; Huddleston, J.G.; Swatloski, R.P.; Holbrey, J.D.; Rogers, R.D.; J. Am. Chem. Soc. 125, 6632-6633, 2003.
Freire, M.G.; Claudio, A.F.M.; Araujo, J.M.; Coutinho, J.A.; Marrucho, I.M.; Lopes, J.N.C.; Rebelo, L.P.N.; Chem. Soc. Rev. 41, 4966-4995, 2012.
Freire, M.G.; “Ionic-liquid-based aqueous biphasic systems”, Springer, Berlin, 2016.
de Souza, R.L.; Campos, V.C.; Ventura, S.P.; Soares, C.M.; Coutinho, J.A.; Lima, Á.S.; Fluid Phase Equilib. 375, 30-36, 2014.
Almeida, M.R.; Passos, H.; Pereira, M.M.; Lima, Á.S.; Coutinho, J.A.; Freire, M.G.; Sep. Purif. Technol. 128, 1-10, 2014.
Souza, R.L.; Ventura, S.P.M.; Soares, C.M.F.; Coutinho, J.A.P. ; Lima, Á.S.; Green Chem. 17, 3026-3034, 2015.
Hamzehzadeh, S.; Vasiresh, M.; Fluid Phase Equilib. 382, 80-88, 2014.
Hamzehzadeh, S.; Abbasi, M.; J. Chem. Thermodyn. 80, 102-111, 2015.
Hamzehzadeh, S.; Majouy, A.; Mokhtarani, B.; J. Mol. Liq. 213, 235-246, 2016.
Hamzehzadeh, S.; Touri, S.; Biotechnol. Prog. 34, 1149-1166, 2018.
Santos, J.H.P.M.; Martins, M.; Silva, A.R.P.; Cunha, J.R.; Rangel-Yagui, C.O.; Ventura, S.P.M.; J. Chem. Eng. Data 65, 3794-3800, 2020.
Marchel, M.; João, K.G.; Marrucho, I.M.; Sep. Purif. Technol. 210, 710-718, 2019.
Ferreira, A.M.; Faustino, V.F.; Mondal, D.; Coutinho, J.A.; Freire, M.G.; J. Biotechnol. 236, 166-175, 2016.
Rita de Cássia, S.S.; Pereira, M.M.; Freire, M.G.; Coutinho, J.A.P.; Sep. Purif .Technol. 196, 244-253, 2018.
Neves, C.M.; Rita de Cássia, S.S.; Pereira, M.M.; Freire, M.G.; Coutinho, J.A.; Biochem. Eng. J. 141, 239-246, 2019.
Marchel, M.; Soares, H.R.; Vormittag, P.; Hubbuch, J.; Coroadinha, A.S.; Marrucho, I.M.; Engineering Reports 1, e12030, 2019.
Jocić, A.; Marić, S.; Dimitrijević, A.; Tot, A.; Gadžurić, S.; Vraneš, M.; Trtić-Petrović, T.; J. Mol. Liq. 303, 112484-112493, 2020.
Tang, N.; Wang, Y.; Liu, M.; Liu, L.; Yin, C.; Yang, X.; Wang, S.; Sep. Purif. Technol. 246, 116898-116907, 2020.
Vernau, J.; Kula, M.R.; Biotechnol. Appl. Biochem. 12, 397-404, 1990.
Ting, A.M.; Lynn, S.; Prausnitz, J.M.; J. Chem. Eng. Data 37, 252-259, 1992.
Cheluget, E.L.; Gelinas, S.; Vera, J.H.; Weber, M.E.; J. Chem. Eng. Data 39, 127-130, 1994.
Hartounian, H.; Floeter, E.; Kaler, E.; Sandler, S.; AIChE J. 39, 1976-1984, 1993.
Bailey, F.;Callard, R.; J. Appl. Polym. Sci. 1, 56-62, 1959.
Bjoerling, M.; Karlstroem, G.; Linse, P.; J. Phy. Chem. 95, 6706-6709, 1991.
Tubío, G.; Pellegrini, L.; Nerli, B.B.; Picó, G.A.; J. Chem. Eng. Data 51, 209-212, 2006.
Remsing, R.C.; Swatloski, R.P.; Rogers, R.D.; Moyna, G.; Chem. Commun. 12, 1271-1273, 2006.
Rodríguez, H.; Francisco, M.; Rahman, ; Sun, N.; Rogers, R.D.; Phys. Chem. Chem. Phys. 11, 10916-10922, 2009.
Rodríguez, H.; Rogers, R.D.; Fluid Phase Equilib. 294, 7-14, 2010.
Tomé, L.I.N.; Pereira, F.B.; Rogers, R.D.; Freire, M.G.; Gomes, J.R.B.; Coutinho, J.A.P.; J. Phys. Chem. B118, 4615–4629, 2014.
Visak, Z.P.; Lopes, J.N.C.; Rebelo, L.P.N.; Monatsh. Chem. 138, 1153-1157, 2007.
_||_
Albertsson, P.-Å.; Nature 182, 709-711, 1958.
Albertsson, P.-Å.; “Partition of cell particles and macromolecules: separation and purification of biomolecules, cell organelles, membranes, and cells in aqueous polymer two-phase systems and their use in biochemical analysis and biotechnology”, Wiley, New York, 1986.
Walter, H.; Brooks, D.E.; Fisher, D.; “Partitioning In Aqueous Two–Phase System: Theory, Methods, Uses, And Applications To Biotechnology”, Academic Press, Toronto, 1985.
Zaslavsky, B.Y.; “Aqueous two-phase partitioning: physical chemistry and bioanalytical applications”, CRC Press, U.S., 1994.
Hatti-Kaul, R. (Ed.); “Aqueous two-phase systems: methods and protocols”, Humana Press, New Jersey, 2000.
Hatti-Kaul, R.; Mol. Biotechnol. 19, 269-277, 2001.
Pereira, J.F.; Lima, Á.S.; Freire, G.; Coutinho, J.A.; Green Chem. 12, 1661-1669, 2010.
Wilkes, J.S.; Green Chem. 4, 73-80, 2002.
Rogers, R.D.; Seddon, K.R.; Science 302, 792-793, 2003.
Zhang, S.; Sun, N.; He, X.; Lu, X.; Zhang, X.; J. Phys. Chem. Ref. Data 35, 1475-1517, 2006.
Gutowski, K.E.; Broker, G.A.; Willauer, H.D.; Huddleston, J.G.; Swatloski, R.P.; Holbrey, J.D.; Rogers, R.D.; J. Am. Chem. Soc. 125, 6632-6633, 2003.
Freire, M.G.; Claudio, A.F.M.; Araujo, J.M.; Coutinho, J.A.; Marrucho, I.M.; Lopes, J.N.C.; Rebelo, L.P.N.; Chem. Soc. Rev. 41, 4966-4995, 2012.
Freire, M.G.; “Ionic-liquid-based aqueous biphasic systems”, Springer, Berlin, 2016.
de Souza, R.L.; Campos, V.C.; Ventura, S.P.; Soares, C.M.; Coutinho, J.A.; Lima, Á.S.; Fluid Phase Equilib. 375, 30-36, 2014.
Almeida, M.R.; Passos, H.; Pereira, M.M.; Lima, Á.S.; Coutinho, J.A.; Freire, M.G.; Sep. Purif. Technol. 128, 1-10, 2014.
Souza, R.L.; Ventura, S.P.M.; Soares, C.M.F.; Coutinho, J.A.P. ; Lima, Á.S.; Green Chem. 17, 3026-3034, 2015.
Hamzehzadeh, S.; Vasiresh, M.; Fluid Phase Equilib. 382, 80-88, 2014.
Hamzehzadeh, S.; Abbasi, M.; J. Chem. Thermodyn. 80, 102-111, 2015.
Hamzehzadeh, S.; Majouy, A.; Mokhtarani, B.; J. Mol. Liq. 213, 235-246, 2016.
Hamzehzadeh, S.; Touri, S.; Biotechnol. Prog. 34, 1149-1166, 2018.
Santos, J.H.P.M.; Martins, M.; Silva, A.R.P.; Cunha, J.R.; Rangel-Yagui, C.O.; Ventura, S.P.M.; J. Chem. Eng. Data 65, 3794-3800, 2020.
Marchel, M.; João, K.G.; Marrucho, I.M.; Sep. Purif. Technol. 210, 710-718, 2019.
Ferreira, A.M.; Faustino, V.F.; Mondal, D.; Coutinho, J.A.; Freire, M.G.; J. Biotechnol. 236, 166-175, 2016.
Rita de Cássia, S.S.; Pereira, M.M.; Freire, M.G.; Coutinho, J.A.P.; Sep. Purif .Technol. 196, 244-253, 2018.
Neves, C.M.; Rita de Cássia, S.S.; Pereira, M.M.; Freire, M.G.; Coutinho, J.A.; Biochem. Eng. J. 141, 239-246, 2019.
Marchel, M.; Soares, H.R.; Vormittag, P.; Hubbuch, J.; Coroadinha, A.S.; Marrucho, I.M.; Engineering Reports 1, e12030, 2019.
Jocić, A.; Marić, S.; Dimitrijević, A.; Tot, A.; Gadžurić, S.; Vraneš, M.; Trtić-Petrović, T.; J. Mol. Liq. 303, 112484-112493, 2020.
Tang, N.; Wang, Y.; Liu, M.; Liu, L.; Yin, C.; Yang, X.; Wang, S.; Sep. Purif. Technol. 246, 116898-116907, 2020.
Vernau, J.; Kula, M.R.; Biotechnol. Appl. Biochem. 12, 397-404, 1990.
Ting, A.M.; Lynn, S.; Prausnitz, J.M.; J. Chem. Eng. Data 37, 252-259, 1992.
Cheluget, E.L.; Gelinas, S.; Vera, J.H.; Weber, M.E.; J. Chem. Eng. Data 39, 127-130, 1994.
Hartounian, H.; Floeter, E.; Kaler, E.; Sandler, S.; AIChE J. 39, 1976-1984, 1993.
Bailey, F.;Callard, R.; J. Appl. Polym. Sci. 1, 56-62, 1959.
Bjoerling, M.; Karlstroem, G.; Linse, P.; J. Phy. Chem. 95, 6706-6709, 1991.
Tubío, G.; Pellegrini, L.; Nerli, B.B.; Picó, G.A.; J. Chem. Eng. Data 51, 209-212, 2006.
Remsing, R.C.; Swatloski, R.P.; Rogers, R.D.; Moyna, G.; Chem. Commun. 12, 1271-1273, 2006.
Rodríguez, H.; Francisco, M.; Rahman, ; Sun, N.; Rogers, R.D.; Phys. Chem. Chem. Phys. 11, 10916-10922, 2009.
Rodríguez, H.; Rogers, R.D.; Fluid Phase Equilib. 294, 7-14, 2010.
Tomé, L.I.N.; Pereira, F.B.; Rogers, R.D.; Freire, M.G.; Gomes, J.R.B.; Coutinho, J.A.P.; J. Phys. Chem. B118, 4615–4629, 2014.
Visak, Z.P.; Lopes, J.N.C.; Rebelo, L.P.N.; Monatsh. Chem. 138, 1153-1157, 2007.