Determination of nitrite in various aqueous samples using magnetic solid phase extraction and image analysis via a mobile phone
Subject Areas :leila khoshmaram 1 * , ali karimi 2 , fatemeh sadeghi 3
1 - Assistant Prof. in Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
2 - B.Sc. student in Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
3 - M.Sc. student in Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
Keywords: Nitrite, Water samples, Image analysis, Magnetic Solid phase Extraction, mobile phone,
Abstract :
In this study, an image analysis method using a homemade colorimeter for determination of trace amount of nitrite in various water samples is provided. The proposed method is based on using a smartphone to obtain RGB values of digital images. 4-nitroaniline and α-naphthol were used to convert nitrite to a colored product. Magnetic solid phase extraction was then used to extract azo dye. In magnetic solid phase extraction, magnetic graphene was used as adsorbent and acetone as a desorption solvent. After taking the extraction phase digital images using a cell phone and their analyzing using Color Grab software, R values were used to obtain analysis signal related to nitrite concentration. The experimental parameters affecting the reaction and extraction efficiency were investigated. Under optimum conditions, the detection limit and the quantitative limit of the method were obtained 1.2 and 4 μg l-1, respectively. The calibration graph was linear in the range of 10-300 μg l-1 with a correlation coefficient of 0.993. The relative standard deviations for 100 and 30 μg l-1 were 2.2 and 3.9, respectively. The proposed method was successfully applied for the determination of nitrite in various water samples.
[1] Alloway, B.J.; Heavy Metals in Soils. Blackie and Son Ltd., Glasgow and London, and John Wiley and Sons. Inc., New York, 1990.
[2] Baveja, A.K.; Nair, J.; Gupta, V.K; Analyst 106(1266), 955-959, 1981.
[3] Zuo, Y.; Wang, C.; Van, T.; Talanta 70(2), 281-285, 2006.
[4] Mehmeti, E.; Stanković, D.M.; Hajrizi, A.; Kalcher, K.; Talanta 159, 34- 39, 2016.
[5] Singh, P.; Beg, Y. R.; Nishad, G.R.; Talanta, DOI: 10.1016/j.talanta.2018.08.028, 2018.
[6] Sadeghi, E.; Sharafi, K.; Almasi, A.; Dayhim, M.; Azizi, E.; Ghayebzadeh, M.; Iran. J. Health & Environ. 7(4), 491-498, 2015.
[7] Narayana, B.; Sunil, K.; Eurasian J. Anal. Chem. 4(2), 204-214, 2009.
[8] Kodamatani, H.; Yamazaki, S.; Saito, K.; Tomiyasu, T.; Komatsu, Y.; J. Chromatogr. A 1216(15), 3163-3167, 2009.
[9] Kubáň, P.; Nguyen, H.T.A.; Macka, M.; Haddad, P.R.; Hauser, P.C.; Electroanalysis 19, 2059-2065, 2007.
[10] Akyüz, M.; Ata, Ş.; Talanta 79(3), 900-904, 2009.
[11] Liu, Y.; Gu, H.Y.; Microchim. Acta 162(1-2), 101-106, 2008.
[12] Kozub, B.R.; Rees, N.V.; Compton, R.G.; Sensor. Actuat. B-Chem. 143(2), 539-546, 2010.
[13] Ozmen, H.; Polat, F.; Cukurovali, A.; Anal. Let. 39, 823-833, 2006.
[14] Tarigh, G.D.; Shemirani, F.; Talanta 128, 354-359, 2014.
[15] Kompany-Zareh, M.; Mansourian, M.; Ravaee, F.; Anal. Chim. Acta 471(1), 97-104, 2002.
[16] Oliveira, L.F.; Canevari, N.T.; Guerra M.B.B., Pereira F.M.V.; Schaefer, C.E.G.R.; Pereira-Filho, E.R.; Microchem. J. 109, 165-169, 2013.
[17] Lima, M.J.; Nascimento, C.F.; Rocha, F.R.; Anal. Methods 9(14), 2220-2225, 2017.
[18] Firdaus, M.L.; Alwi, W.; Trinoveldi, F.; Rahayu, I.; Rahmidar, L.; Warsito, K.; Procedia Environ. Sci. 20, 298-304, 2014.
[19] Hemmati, M.; Rajabi, M.; Asghari, A.; Microchim. Acta 185(3), 160, 2018.
[20] Herrero-Latorre, C.; Barciela-García, J.; García-Martín, S.; Peña-Crecente, R.M.; Otárola-Jiménez, J.; Anal. Chim. Acta 892, 10-26, 2015.
[21] Wierucka, M.; Biziuk, M.; TrAC Trends in Anal. Chem. 59, 50-58, 2014.
[22] Hao, L.; Wang, C.; Ma, X.; Wu, Q.; Wang, C.; Wang, Z.; Anal. Methods 6, 5659-5665, 2014.