Preparation and identification of 4- benzenesulfonamidethiophenol grafted on silver nanoparticles and binding studies with calf thymus DNA, human serum albumin and bovin serum albumin using spectroscopic and molecular docking methods
Subject Areas :fereshteh amiri 1 , marziyeh sadeghi 2 , tahreh shokri 3
1 - دانش آموخته کارشناسی ارشد، دانشگاه پیام نور، مرکز خوی، ایران
2 - استادیار شیمی تجزیه، دانشکده شیمی، دانشگاه رازی، کرمانشاه، ایران
3 - دانشجوی کارشناسی ارشد تجزیه ، دانشکده شیمی، دانشگاه رازی، کرمانشاه، ایران
Keywords: DNA, Bovine serum albumin, Human serum albumin, BSATP functionalized silver nanparticles, Spectrocopic studies, Molecular ducking,
Abstract :
In this article, silver nanoparticles capped with 4- benzenesulfonamideaminothiophenol (BSATP-AgNP) were synthesized. The formation of synthesized nanoparticles was characterized by UV–Vis spectroscopy, FTIR, TEM, and NMR. The interactions between the silver nanoparticles with calf-thymus DNA, human serum albumin (HAS) and bovine serum albumin (BSA) were investigated by UV-Vis spectroscopy, fluorescence spectroscopy, circular dicroism (CD) spectroscopy, viscosity measurements, and molecular docking studies. Circular dicroism data showed that binding of BSATP-AgNPs to DNA resulted in changes in the structure and conformation of DNA. This indicates a minor groove mode of binding. Fluorimeteric studies showed a decrease in fluorescence intensity of the BSATP-AgNPs in the presence of increasing amounts of DNA solution. The results of CD data indicate that the conformation of HSA and BSA molecules is changed significantly in the presence of BSATP-AgNPs. The negative ΔH and ΔS values indicate that the main interactions between BSATP-AgNPs and HSA were hydrogen bonding and weak van der Waals forces. The results of the site marker competitive experiment confirmed that the BSATP AgNPs can bind to HSA located within site I (subdomain IIA) and BSA within site II. The experimental results were in agreement with the results obtained via a molecular docking study. This study provided important insight into the interaction of BSATP-AgNPs with DNA and serum albumin, facilitating further investigation on the pharmacological behavior of BSATP-AgNPs.
[1] Opar, A; Nat. Rev. Drug Discov. 8(6), 437-8, 2009.
[2] Yezhelyev, M.V; Gao, X.; Xing, Y.; Al-Hajj, A.; Nie, S.; O’Regan, R.M.; Lancet Oncol. 7, 657-667, 2006.
[3] Choi, Y.H; Han, H.K.; J. Pharm. Investig. 48, 43–60, 2018.
[4] CHAN, H.K.; Adv. Drug Deliver. Rev. 63(6), 405-40, 2011.
[5] Russell, A.D.; Hugo, W.B.; “7 Antimicrobial activity and action of silver”, Progress in Medicinal Chemistry, Elsevier, UK, 1994.
[6] Lee, S.H.; Jun, B.H.; Int. J. Mol. Sci. 20, 865-889, 2019,
[7] Chugh, H.; Sood, D.; Chandra, I.; Tomar, V.; Dhawan, Chandra, G.; Artif. Cells Nanomed. Biotechnol, 46, 1210-1220, 2018.
[8] Ravindran, A.; Chandran, P.; Khan, S.S.; Colloids Surf. B 105, 342–352, 2013.
[9] Basu, S.; Jana, S.; Pande, S.; Pal, T.; J. Colloid Interface Sci. 321, 288–293, 2008.
[10] Zheng, J.; Wu, X.; Wang, M.; Ran, D.; Xu, W.; Yang, J.; Talanta 74, 526–532, 2008.
[11] Rutkauskas, K.; Zubrienė, A.; Tumosienė, I.; Kantminienė, K.; Kažemėkaitė, M.; Smirnov, A.; Kazokaite, J.; Mourkunaite, V.; Capkauskaite, E.; Manakova, E.; Grazulis, S.; Zigmuntas, J.B.; Matulis, D.; Anhydrases Molecules 19, 17356-17380, 2014.
[12] Kalgutkar, A.S; JONES, R.M.; Sawant, A; “Sulfonamide as an essential functional group in drug design (Chap. 5)” in “Metabolism, Pharmacokinetics and Toxicity of Functional Groups: Impact of Chemical Building Blocks on ADMET, Edited by Dennis, A.S.”, Royal Society of Chemistry, UK, 2010.
[13] Kordestani, D.; Ph.D Thesis, Razi University, Kermanshah, Iran, 2013.
[14] Akdi, K.; Vilaplana, R.A.; Kamah, S.; González-Vílchez, F.; J. Inorg. Biochem. 99(6), 1360-1368, 2005.
[15] Amendola, V.; Bakr, O.M.; Stellacci, F.; Plasmonics 5(1), 85–97, 2010.
[16] Asker, F.W; Mahamad, Z.Z.; Eliwei, A.G.; Nief, O.A; Int. J Appl. Chem. 13(2), 169-177, 2017.
[17] Başar, E; Tunca, E; Bülbül, M; Kaya, M; J Enzyme Inhib. Med. Chem. 31(6), 1356–1361, 2016.
[18] Liu, Z.C.; Wang, B.D.; Yang, Z.Y.; Li, Y.; Qin, D.D.; Li, T.R.; Europ J Med. Chem. 44, 4477-4484, 2009.
[19] Shahabadi, N.; Amiri, S.; Zhaleh, H.; J Coord. Chem. 73, 1-17, 2020.
[20] Shi, S.; Liu, J.; Li, J.; Zheng, K.C.; Huang, X.M.; Tan, C.P.; Chen, L.M.; Ji, L.N.; J. Inorg. Biochem. 100, 385-395, 2006.
[21] Kumar, K.A.; Reddy, K.L.; Satyanaryana, S.; Transit. Metal Chem. 35, 713-720, 2010.
[22] Wolfe, A.R.; Meehan, T.; Nucleic Acids Res. 22, 3147-3150, 1994.
[23] Jalali, F.; Dorraji, P.; J. Pharm. Biomed. Anal. 70, 598-601, 2012.
[24] Kashanian, S.; Zeidali, S.H.; DNA Cell Biol. 30, 499-505, 2011.
[25] Lakowicz, J.R.; “Principles of fluorescence spectroscopy 2nd Ed.”, Springer, USA, 2013.
[26] Ross, P.D.; Subramanian, S.; Biochemistry 20, 3096-3102, 1981.
[27] Sahabadi, N.; Maghsudi, M.; Dyes and Pigm. 96(2), 377-382, 2013.
[28] Patra, A.K.; Nethaji, M.; Chakravarty, A.R.; J. Inorg. Biochem. 2007, 101(2), 233-244.
[29] Ahmadi, F.; Alizadeh, A.A.; Bakhshandeh, F.; Jafari, B.; Khodadadian, M.; Food Chem. Toxicol. 48(1), 29-36, 2010.
[30] Yang, H.; Xing-Ming W.; J. Mol. Struct. 1036, 51-55, 2013.
[31] Freifelder, D.M.; “Physical biochemistry: Applications to biochemistry and molecular biology”, 2nd Edition, Amazon Book, USA, 1982.
[32] Silverman, R.B.; Holiaday, M.W.; The organic chemistry of drug design and drug action. Academic press, 2014.
[33] Neidle, S. Nat. Prod. Rep. 18(3), 291-309, 2001.
[34] Shahabadi, N.; Hadidi, S.; Feizi, F.; Spectrochimica Acta A 138, 169–175, 2015.
[35] Abou-Zied, O.K; Al-Shishi, O.I.K; J. Am. Chem. Soc. 130 (32), 10793-10801, 2008.
[36] Permyakov, E.A.; Luminescent spectroscopy of proteins, CRC Press, USA, 1992.
[37] Keizer, J.; J. Am. Chem. Soc. 105, 1494-1498, 1983.
[38] Eftink, M.R.; Ghiron, C.A.; Biochemistry 16(25), 5546-5551, 1977.
[39] Boaz, H.; Rollefson, G.K.; J. Am. Chem. Soc. 72(8), 3435-3443, 1950.
[40] Dufour, C.; Dangles, O.; Biochim. Biophys. Acta (BBA), 1721(1), 164-173, 2005.
[41] Förster, T.; J. Biomed. Optics 17(1), 0110021-01100210, 2012.
[42] Greefield, N.J.; Fasman, G.D.; Biochemistry 8(10), 4108- 4116, 1969.
_||_[1] Opar, A; Nat. Rev. Drug Discov. 8(6), 437-8, 2009.
[2] Yezhelyev, M.V; Gao, X.; Xing, Y.; Al-Hajj, A.; Nie, S.; O’Regan, R.M.; Lancet Oncol. 7, 657-667, 2006.
[3] Choi, Y.H; Han, H.K.; J. Pharm. Investig. 48, 43–60, 2018.
[4] CHAN, H.K.; Adv. Drug Deliver. Rev. 63(6), 405-40, 2011.
[5] Russell, A.D.; Hugo, W.B.; “7 Antimicrobial activity and action of silver”, Progress in Medicinal Chemistry, Elsevier, UK, 1994.
[6] Lee, S.H.; Jun, B.H.; Int. J. Mol. Sci. 20, 865-889, 2019,
[7] Chugh, H.; Sood, D.; Chandra, I.; Tomar, V.; Dhawan, Chandra, G.; Artif. Cells Nanomed. Biotechnol, 46, 1210-1220, 2018.
[8] Ravindran, A.; Chandran, P.; Khan, S.S.; Colloids Surf. B 105, 342–352, 2013.
[9] Basu, S.; Jana, S.; Pande, S.; Pal, T.; J. Colloid Interface Sci. 321, 288–293, 2008.
[10] Zheng, J.; Wu, X.; Wang, M.; Ran, D.; Xu, W.; Yang, J.; Talanta 74, 526–532, 2008.
[11] Rutkauskas, K.; Zubrienė, A.; Tumosienė, I.; Kantminienė, K.; Kažemėkaitė, M.; Smirnov, A.; Kazokaite, J.; Mourkunaite, V.; Capkauskaite, E.; Manakova, E.; Grazulis, S.; Zigmuntas, J.B.; Matulis, D.; Anhydrases Molecules 19, 17356-17380, 2014.
[12] Kalgutkar, A.S; JONES, R.M.; Sawant, A; “Sulfonamide as an essential functional group in drug design (Chap. 5)” in “Metabolism, Pharmacokinetics and Toxicity of Functional Groups: Impact of Chemical Building Blocks on ADMET, Edited by Dennis, A.S.”, Royal Society of Chemistry, UK, 2010.
[13] Kordestani, D.; Ph.D Thesis, Razi University, Kermanshah, Iran, 2013.
[14] Akdi, K.; Vilaplana, R.A.; Kamah, S.; González-Vílchez, F.; J. Inorg. Biochem. 99(6), 1360-1368, 2005.
[15] Amendola, V.; Bakr, O.M.; Stellacci, F.; Plasmonics 5(1), 85–97, 2010.
[16] Asker, F.W; Mahamad, Z.Z.; Eliwei, A.G.; Nief, O.A; Int. J Appl. Chem. 13(2), 169-177, 2017.
[17] Başar, E; Tunca, E; Bülbül, M; Kaya, M; J Enzyme Inhib. Med. Chem. 31(6), 1356–1361, 2016.
[18] Liu, Z.C.; Wang, B.D.; Yang, Z.Y.; Li, Y.; Qin, D.D.; Li, T.R.; Europ J Med. Chem. 44, 4477-4484, 2009.
[19] Shahabadi, N.; Amiri, S.; Zhaleh, H.; J Coord. Chem. 73, 1-17, 2020.
[20] Shi, S.; Liu, J.; Li, J.; Zheng, K.C.; Huang, X.M.; Tan, C.P.; Chen, L.M.; Ji, L.N.; J. Inorg. Biochem. 100, 385-395, 2006.
[21] Kumar, K.A.; Reddy, K.L.; Satyanaryana, S.; Transit. Metal Chem. 35, 713-720, 2010.
[22] Wolfe, A.R.; Meehan, T.; Nucleic Acids Res. 22, 3147-3150, 1994.
[23] Jalali, F.; Dorraji, P.; J. Pharm. Biomed. Anal. 70, 598-601, 2012.
[24] Kashanian, S.; Zeidali, S.H.; DNA Cell Biol. 30, 499-505, 2011.
[25] Lakowicz, J.R.; “Principles of fluorescence spectroscopy 2nd Ed.”, Springer, USA, 2013.
[26] Ross, P.D.; Subramanian, S.; Biochemistry 20, 3096-3102, 1981.
[27] Sahabadi, N.; Maghsudi, M.; Dyes and Pigm. 96(2), 377-382, 2013.
[28] Patra, A.K.; Nethaji, M.; Chakravarty, A.R.; J. Inorg. Biochem. 2007, 101(2), 233-244.
[29] Ahmadi, F.; Alizadeh, A.A.; Bakhshandeh, F.; Jafari, B.; Khodadadian, M.; Food Chem. Toxicol. 48(1), 29-36, 2010.
[30] Yang, H.; Xing-Ming W.; J. Mol. Struct. 1036, 51-55, 2013.
[31] Freifelder, D.M.; “Physical biochemistry: Applications to biochemistry and molecular biology”, 2nd Edition, Amazon Book, USA, 1982.
[32] Silverman, R.B.; Holiaday, M.W.; The organic chemistry of drug design and drug action. Academic press, 2014.
[33] Neidle, S. Nat. Prod. Rep. 18(3), 291-309, 2001.
[34] Shahabadi, N.; Hadidi, S.; Feizi, F.; Spectrochimica Acta A 138, 169–175, 2015.
[35] Abou-Zied, O.K; Al-Shishi, O.I.K; J. Am. Chem. Soc. 130 (32), 10793-10801, 2008.
[36] Permyakov, E.A.; Luminescent spectroscopy of proteins, CRC Press, USA, 1992.
[37] Keizer, J.; J. Am. Chem. Soc. 105, 1494-1498, 1983.
[38] Eftink, M.R.; Ghiron, C.A.; Biochemistry 16(25), 5546-5551, 1977.
[39] Boaz, H.; Rollefson, G.K.; J. Am. Chem. Soc. 72(8), 3435-3443, 1950.
[40] Dufour, C.; Dangles, O.; Biochim. Biophys. Acta (BBA), 1721(1), 164-173, 2005.
[41] Förster, T.; J. Biomed. Optics 17(1), 0110021-01100210, 2012.
[42] Greefield, N.J.; Fasman, G.D.; Biochemistry 8(10), 4108- 4116, 1969.