Investigation of thermophysical properties and rheology of iron-silver-copper metal oxide hybrid nanoparticles based on carbon structure of quantum dots for use in heat transfer systems with turbulent flow regime
Subject Areas :Hamid Mousavi 1 , , Seyed Mostafa Tabatabaee Ghomshe 2 * , Alimorad rashidi 3 , Masoumeh Mirzaei 4
1 - Head of study department
2 - . Department of Chemical Engineering, Mahshar Branch, Islamic Azad University, Mahshahr
3 - head of carbon group
4 - Department of Chemical Engineering, Mahshar Branch, Islamic Azad University, Mahshahr
Keywords: Thermal conductivity, Nanohybrid, Carbon quantum dot base fluids, heat transfer coefficient-,
Abstract :
In this work, nano-hybrids of iron-carbon quantum dots, silver-carbon quantum dots, and copper– carbon quantum dots were synthesized and prepared by a wet chemical method. After examining their thermal and thermophysical properties, the thermal conductivity (k) was measured and the heat transfer coefficient (h) for turbulent flow was compared. The synthesized samples were characterized with Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), tunneling electron microscopy (TEM), and scanning electron microscopy (SEM). Zeta, and dynamic light scattering (DLS) stability tests were also performed for the synthesized samples. The prepared carbon quantum dots and hybridized-iron, silver, and copper samples were distributed in the base fluid (water) by ultrasonic probe device. Viscosity and density were examined as a measure of nanoparticle concentration and temperature. Also, the heat capacity of synthesized nanoparticles was measured at different temperatures, but the changes in density and heat capacity at low concentrations of nanoparticles were not significant. Then the thermal conductivity (k) and the heat transfer coefficient (h) were measured to improve the heat transfer by the synthesized nanoparticles. The synthesized nanoparticles were prepared and analyzed for three different concentrations of 0.05, 0.1, and 0.5 wt. %. The greatest improvement in thermal conductivity 25 % at a concentration 0.5 wt. % and 45 °C was for hybridized copper nanoparticles-carbon quantum dots. Also, the highest improvement in heat transfer coefficient (h) was reported in Reynolds number 15529 for silver nanoparticles-carbon quantum dots improvement was about 29 %. In addition, copper nanoparticles-carbon quantum dots with a 20 % improvement in transfer heat transfer coefficient reported.
مراجع
[1] Sidik, N.A.C.; Mohammed, H.A.; Alawi, O.A.; Samion, S.; Inter.Comm. in H&M Transf. 54, 115-25, 2014.
[2] Haddad, Z.; Abid, C.; Oztop, H.F.; Mataoui, A.; J. Therm. Sci. 76, 168-89, 2014.
[3] Keblinski, P.; Eastman, J.A.; Cahill, D.G.; Materials Today 8(6), 36-44, 2005.
[4] Askari,S.; Lotfi, R.; Rashidi, A.; Koolivand, H.; Koolivand-Salooki, M.; Energy convers.& manag 128, 134-44, 2016.
[5] Cacua, K.; Ordoñez, F.; Zapata, C.; Herrera, B.; Pabón, E.; Buitrago-Sierra, R.; Physicochemical and Eng. Aspects 583, 123960, 2016.
[6] Xue, L.; Keblinski, P.; Phillpot, S.R.; Choi, S.U.S.; Eastman, J.A.; J. H.&.M Transf. 47(19-20), 4277-84, 2004.
[7] Ilyas, S.U.; Ridha, S.; Kareem, F.A.A.; A Physicochemical and Eng. Aspects 592, 124584, 2005.
[8] Keblinski, P.; Phillpot, S.R.; Choi, S.U.S.; Eastman, J.A.; J. H & M Trans. 45(4), 855-63, 2002.
[9] Safaei, A.; Nezhad, A.H.; Rashidi, A.; App.Therm. Eng. 170, 114991, 2020.
[10] Ahmed, M.S.; Elsaid, A.M.; App.Therm. Eng. 163, 114398, 2019.
[11] Chakraborty, S.; Panigrahi, P.K.; App. Therm. Eng. 115259, 2020.
[12] Choi, S.; Zhang, Z.; Yu, W.; Lockwood, F.; Grulke, E.; App. Physics Letters 79(14), 2252-4, 2001.
[13] Eastman, J.; Choi, S.; Li, S.; Yu, W.; Thompson, L.; App. Physics Letters 78(6), 718-20, 2001.
[14] Sadeghinezhad, E.; Togun, H.;Mehrali, M.; Sadeghi Nejad, P.; Ahan Latibari, S.; Abdulrazzaq, T,; Inter. J. of H & M Trans. 81, 41-51, 2015.
[15] Ghozatloo, A.; Rashidi, A.; Shariaty Niassar, M.; Exper.Therm. and Fluid Sci. 53, 136-41, 2014.
[16] Sudeep, P.M.; Taha Tijerina, J.; Ajayan, P.M.; Narayanan,T.N.; R.S.C Advances 4(47), 24887, 2014.
[17] Aravind, S.S.J.; Baskar, P.; Baby, T.T.; Sabareesh, R.K.; Das, S.; Ramaprabhu, S.; J. Physical Chemistry 11(34), 16737-44, 2011.
[18] Meibodi, M.E.; Vafaie Sefti, M.; Rashidi, A.M.; Amrollahi, A.; Tabasi, M.; Kalal, H.S.; Inter. Comm. in H & M Trans. 37(3), 319-23, 2010.
[19] Talaei, Z.; Mahjoub, A.R.; Rashidi, A.M.; Amrollahi, A.; Emami Meibodi, M.; International Comm. in H & M Trans. 38(4), 513-7, 2011.
[20] Sawai, O.; Oshima, Y.; J.Supercritical Fluids 47(2), 240-6, 2008.
[21] Jha, N.; Ramaprabhu, S.; J. Physical Chemistry 112(25), 9315-9, 2008.
[22] Theres Baby, T.; Sundara, R.; AIP Adv. 3(1), 012111, 2013.
[23] Patel, H.E.; Das, S.K.; Sundararajan, T.; Nair, A.S.; George, B.; Pradeep, T.; App. Physics Letters 83(14), 2931-3, 2003.
[24] Etefaghi, E.; Rashidi, A.M.; Gobadian, B.; Najafi, M.H.; Sidik, C.; Yadegari, A.; Wei Xian, H.; Inter. comm. in H & M trans. 90, 85-92, 2018.
[25] Jha, N.; Ramaprabhu, S.; J. Appl. Physics 106(8), 084317, 2009.
[26] Ahmadu, T.O.; Dandajeh, H.A.; FUOYE J. of Eng. and Tech. 4(2), 203-225, 2019.
[27] Chen, X.; Sun, F.; Lyu, D.; App. Therm. Eng. 162, 114252, 2019.
[28] Amini, M.; Zareh, M.; Maleki, S.; App. Therm. Eng. 175, 115268, 2020.
[29] Askari, S.; Lotfi, R.; Seifkordi, A.; Rashidi, A.M.; Koolivand, H.; Energy Conv. and Manag. 109, 10-8, 20016.
[30] Imani Mofrad, P.; Saeed, Z.H.; Shanbedi, M.; Energy Conv. and Management. 127, 199-207, 2016.
[31] Xie, X.; Zhang, Y.; He, C.; Xu, T.; Zhang, B.; Chen, Q.; Indus. & Eng.Chemistry Res. 56(20), 6022-34, 2017.
[32] Lee, P.; Meisel, D.; J. Phy. Che. 86(17), 3391-5, 1982.
[33] Stankovich, S.; Dikin, D.A.; Piner, R.D.; Kohlhaas, K.A.; Kleinhammes, A.; Jia, Y.; Carbon. 45(7), 158-65, 2007.
[34] Szabó, T.; Berkesi ,O.; Forgó, P.; Josepovits, K.; Sanakis, Y.; Petridis, D.; Chem. Mater. 18(11), 2740-9, 2006.
[35] Sarsam, W.S.; Amiri. A.; Kazi, S.; Badarudin, A.; Energy Conv. & Manag. 116, 101-11, 2016.
[36] Li, Y.; Tung, S.; Schneider, E.; Xi, S.; Powder Tec. 196(2), 89-101, 2009.
[37] Noroozi, M.; Zakaria, A.; Moksin, M,M.; Wahab, Z,A.; Abedini, A.; Inter. J molecular Sci. 13 (7), 8086-96, 2012.
[38] Sadeghi, R.; Etemad, S.G.; Keshavarzi, E.; Haghshenasfard, M.; Microfluidics and Nanofluidics 18(5-6), 1023-30, 2014.
[39] Askari, S.; Koolivand, H.; Pourkhalil, M.; Lotfi, R.; Rashidi, A.; J. Comm. in H & M Trans. 87, 30-9, 2017.
[40] Huang, J.; Wang, C.; Zhang, X.; Jia, W.; Ma, R.; Yang, Z.; Physicochemical and Eng. Aspects 581, 123805, 2019.
[41] Bazmi, M.; Askari, S.; Ghasemy, E.; Rashidi, A.; Ettefaghi, E.; J. Therm. Analysis & Cal. 138(1), 69-79, 2019.
[42] Shima, P.D.; Philip, J.; Ind. & Eng. Chemistry Res. 53(2), 980-8, 2014.
[43] Mahbubul, I.; Saidur, R.; Amalina, M.; J. H & M Transf. 55(4), 874-85 , 2012.
[44] Mishra, P.C.; Mukherjee, S.; Nayak, S.K.; Panda, A.; Inter. Nano Letters 4(4), 109-20, 2014.
[45] Agarwal, D.K.; Vaidyanathan, A.; Kumar, S.S.; Applied Thermal Engineering, 84, 64-73, 2015.
[46] Singh, R.; Sanchez, O.; Ghosh, S.; Kadimcherla, N.; Sen, S.; Balasubramanian, G.; Physics Letters 379(40), 2641-4, 2015.
[47] Estellé, P.; Materials Letters 138, 162-3, 2015.
[48] Kole, M.; Dey, T.; J.of App. Physics 113(8), 084307, 2013.
[49] Baby, T.T.; Sundara, R.; J. Phy. Chem. 115(17), 8527-33, 2011.
[50] Mukesh Kumar, P.; Kumar, J.; Tamilarasan, R.; Sendhilnathan, S.; Suresh, S.; Eng. J. 19(1), 67-83, 2015.
[51] Gnielinski, V.; Inter.Chemical Eng. 16(2), 359-68, 1976.
[52] Sadeghinezhad, E.; Mehrali, M.; Tahan Latibari, S.; Mehrali, M.; Kazi, S.; Oon, C.S.; Ind. & Eng. Chemistry Res. 53(31), 12455-65, 2014.
[53] Moffat ,R.; J. Fluids Eng. 104(2), 250-258, 1982.
[54] Yi, Y.; Jing, C.; Ning, W.; Donghu, M.; Lina, W.; Guohua, R.; Rongxin, Y.; Ning, Z.; Molecules 24(6), 1103, 2019.
[55] Xu, Y.; Bai, H.; Lu, G.; Li, C.; Shi, G.; J.American Chem. Society 130, 5856-5857, 2008.
[56] Pourhashem, S.; Ghasemy, E.; Rashidi, A.M.; Vaezi,M.R.; J. Alloys and Comp. 731, 1112-1118, 2018.
[57] Ardelean,I.; Cora, S.; J. Materials Sci. 19, 584-588, 2008.
[58] Reddy, K.; Sin, B.; Yoo, C.H.; Park, W.; Ryu, K.S.; Lee, J.; Sohn, D.; Lee, Y.; Scripta Materialia 58, 1010-1013, 2008.
_||_
مراجع
[1] Sidik, N.A.C.; Mohammed, H.A.; Alawi, O.A.; Samion, S.; Inter.Comm. in H&M Transf. 54, 115-25, 2014.
[2] Haddad, Z.; Abid, C.; Oztop, H.F.; Mataoui, A.; J. Therm. Sci. 76, 168-89, 2014.
[3] Keblinski, P.; Eastman, J.A.; Cahill, D.G.; Materials Today 8(6), 36-44, 2005.
[4] Askari,S.; Lotfi, R.; Rashidi, A.; Koolivand, H.; Koolivand-Salooki, M.; Energy convers.& manag 128, 134-44, 2016.
[5] Cacua, K.; Ordoñez, F.; Zapata, C.; Herrera, B.; Pabón, E.; Buitrago-Sierra, R.; Physicochemical and Eng. Aspects 583, 123960, 2016.
[6] Xue, L.; Keblinski, P.; Phillpot, S.R.; Choi, S.U.S.; Eastman, J.A.; J. H.&.M Transf. 47(19-20), 4277-84, 2004.
[7] Ilyas, S.U.; Ridha, S.; Kareem, F.A.A.; A Physicochemical and Eng. Aspects 592, 124584, 2005.
[8] Keblinski, P.; Phillpot, S.R.; Choi, S.U.S.; Eastman, J.A.; J. H & M Trans. 45(4), 855-63, 2002.
[9] Safaei, A.; Nezhad, A.H.; Rashidi, A.; App.Therm. Eng. 170, 114991, 2020.
[10] Ahmed, M.S.; Elsaid, A.M.; App.Therm. Eng. 163, 114398, 2019.
[11] Chakraborty, S.; Panigrahi, P.K.; App. Therm. Eng. 115259, 2020.
[12] Choi, S.; Zhang, Z.; Yu, W.; Lockwood, F.; Grulke, E.; App. Physics Letters 79(14), 2252-4, 2001.
[13] Eastman, J.; Choi, S.; Li, S.; Yu, W.; Thompson, L.; App. Physics Letters 78(6), 718-20, 2001.
[14] Sadeghinezhad, E.; Togun, H.;Mehrali, M.; Sadeghi Nejad, P.; Ahan Latibari, S.; Abdulrazzaq, T,; Inter. J. of H & M Trans. 81, 41-51, 2015.
[15] Ghozatloo, A.; Rashidi, A.; Shariaty Niassar, M.; Exper.Therm. and Fluid Sci. 53, 136-41, 2014.
[16] Sudeep, P.M.; Taha Tijerina, J.; Ajayan, P.M.; Narayanan,T.N.; R.S.C Advances 4(47), 24887, 2014.
[17] Aravind, S.S.J.; Baskar, P.; Baby, T.T.; Sabareesh, R.K.; Das, S.; Ramaprabhu, S.; J. Physical Chemistry 11(34), 16737-44, 2011.
[18] Meibodi, M.E.; Vafaie Sefti, M.; Rashidi, A.M.; Amrollahi, A.; Tabasi, M.; Kalal, H.S.; Inter. Comm. in H & M Trans. 37(3), 319-23, 2010.
[19] Talaei, Z.; Mahjoub, A.R.; Rashidi, A.M.; Amrollahi, A.; Emami Meibodi, M.; International Comm. in H & M Trans. 38(4), 513-7, 2011.
[20] Sawai, O.; Oshima, Y.; J.Supercritical Fluids 47(2), 240-6, 2008.
[21] Jha, N.; Ramaprabhu, S.; J. Physical Chemistry 112(25), 9315-9, 2008.
[22] Theres Baby, T.; Sundara, R.; AIP Adv. 3(1), 012111, 2013.
[23] Patel, H.E.; Das, S.K.; Sundararajan, T.; Nair, A.S.; George, B.; Pradeep, T.; App. Physics Letters 83(14), 2931-3, 2003.
[24] Etefaghi, E.; Rashidi, A.M.; Gobadian, B.; Najafi, M.H.; Sidik, C.; Yadegari, A.; Wei Xian, H.; Inter. comm. in H & M trans. 90, 85-92, 2018.
[25] Jha, N.; Ramaprabhu, S.; J. Appl. Physics 106(8), 084317, 2009.
[26] Ahmadu, T.O.; Dandajeh, H.A.; FUOYE J. of Eng. and Tech. 4(2), 203-225, 2019.
[27] Chen, X.; Sun, F.; Lyu, D.; App. Therm. Eng. 162, 114252, 2019.
[28] Amini, M.; Zareh, M.; Maleki, S.; App. Therm. Eng. 175, 115268, 2020.
[29] Askari, S.; Lotfi, R.; Seifkordi, A.; Rashidi, A.M.; Koolivand, H.; Energy Conv. and Manag. 109, 10-8, 20016.
[30] Imani Mofrad, P.; Saeed, Z.H.; Shanbedi, M.; Energy Conv. and Management. 127, 199-207, 2016.
[31] Xie, X.; Zhang, Y.; He, C.; Xu, T.; Zhang, B.; Chen, Q.; Indus. & Eng.Chemistry Res. 56(20), 6022-34, 2017.
[32] Lee, P.; Meisel, D.; J. Phy. Che. 86(17), 3391-5, 1982.
[33] Stankovich, S.; Dikin, D.A.; Piner, R.D.; Kohlhaas, K.A.; Kleinhammes, A.; Jia, Y.; Carbon. 45(7), 158-65, 2007.
[34] Szabó, T.; Berkesi ,O.; Forgó, P.; Josepovits, K.; Sanakis, Y.; Petridis, D.; Chem. Mater. 18(11), 2740-9, 2006.
[35] Sarsam, W.S.; Amiri. A.; Kazi, S.; Badarudin, A.; Energy Conv. & Manag. 116, 101-11, 2016.
[36] Li, Y.; Tung, S.; Schneider, E.; Xi, S.; Powder Tec. 196(2), 89-101, 2009.
[37] Noroozi, M.; Zakaria, A.; Moksin, M,M.; Wahab, Z,A.; Abedini, A.; Inter. J molecular Sci. 13 (7), 8086-96, 2012.
[38] Sadeghi, R.; Etemad, S.G.; Keshavarzi, E.; Haghshenasfard, M.; Microfluidics and Nanofluidics 18(5-6), 1023-30, 2014.
[39] Askari, S.; Koolivand, H.; Pourkhalil, M.; Lotfi, R.; Rashidi, A.; J. Comm. in H & M Trans. 87, 30-9, 2017.
[40] Huang, J.; Wang, C.; Zhang, X.; Jia, W.; Ma, R.; Yang, Z.; Physicochemical and Eng. Aspects 581, 123805, 2019.
[41] Bazmi, M.; Askari, S.; Ghasemy, E.; Rashidi, A.; Ettefaghi, E.; J. Therm. Analysis & Cal. 138(1), 69-79, 2019.
[42] Shima, P.D.; Philip, J.; Ind. & Eng. Chemistry Res. 53(2), 980-8, 2014.
[43] Mahbubul, I.; Saidur, R.; Amalina, M.; J. H & M Transf. 55(4), 874-85 , 2012.
[44] Mishra, P.C.; Mukherjee, S.; Nayak, S.K.; Panda, A.; Inter. Nano Letters 4(4), 109-20, 2014.
[45] Agarwal, D.K.; Vaidyanathan, A.; Kumar, S.S.; Applied Thermal Engineering, 84, 64-73, 2015.
[46] Singh, R.; Sanchez, O.; Ghosh, S.; Kadimcherla, N.; Sen, S.; Balasubramanian, G.; Physics Letters 379(40), 2641-4, 2015.
[47] Estellé, P.; Materials Letters 138, 162-3, 2015.
[48] Kole, M.; Dey, T.; J.of App. Physics 113(8), 084307, 2013.
[49] Baby, T.T.; Sundara, R.; J. Phy. Chem. 115(17), 8527-33, 2011.
[50] Mukesh Kumar, P.; Kumar, J.; Tamilarasan, R.; Sendhilnathan, S.; Suresh, S.; Eng. J. 19(1), 67-83, 2015.
[51] Gnielinski, V.; Inter.Chemical Eng. 16(2), 359-68, 1976.
[52] Sadeghinezhad, E.; Mehrali, M.; Tahan Latibari, S.; Mehrali, M.; Kazi, S.; Oon, C.S.; Ind. & Eng. Chemistry Res. 53(31), 12455-65, 2014.
[53] Moffat ,R.; J. Fluids Eng. 104(2), 250-258, 1982.
[54] Yi, Y.; Jing, C.; Ning, W.; Donghu, M.; Lina, W.; Guohua, R.; Rongxin, Y.; Ning, Z.; Molecules 24(6), 1103, 2019.
[55] Xu, Y.; Bai, H.; Lu, G.; Li, C.; Shi, G.; J.American Chem. Society 130, 5856-5857, 2008.
[56] Pourhashem, S.; Ghasemy, E.; Rashidi, A.M.; Vaezi,M.R.; J. Alloys and Comp. 731, 1112-1118, 2018.
[57] Ardelean,I.; Cora, S.; J. Materials Sci. 19, 584-588, 2008.
[58] Reddy, K.; Sin, B.; Yoo, C.H.; Park, W.; Ryu, K.S.; Lee, J.; Sohn, D.; Lee, Y.; Scripta Materialia 58, 1010-1013, 2008.