Investigation of the pumice mineral adsorbent silanization for oil/water separation
Subject Areas :Parveneh Raeisi 1 , Reza Norouzbeigi 2 * , Hadi Shayesteh 3
1 - School of chemical, petroleum and gas engineering, Iran university of science and technology
2 - Ph.D. of Chemical Engineering, Separation Process and Material processing, Faculty of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
3 - Ph.D. candidate in Chemical Engineering, Separation Process and Material processing, Faculty of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
Keywords: Pumice, Oil/water separation, Superhydrophobicity, Contact angle,
Abstract :
Providing acceptable and cost-effective environmental biomaterials that can remove the oily phase from the water is necessary. The aim of the present study was to prepare pumice, an oil adsorbent, and performance evaluation of the mineral material in oil/water separation. By applying one factor at a time method, the effect of the modifier type (octadecyl trichlorosilane and trimethylchlorosilane) and the modifier concentration (within a specific range) were evaluated for the pumice. The optimum water contact angle of pumice was obtained 159.2°±0.82°. Instrumental characterizations were performed to determine the properties of the adsorbents. Also, the presence of modifiers on the surface of the pumice was confirmed. The removal efficiency and flow rate of dichloromethane from water using pumice were 98.3% and 8422.38 Lm-2 h-1, respectively. Also, separation efficiency experimental in ten cycles was performed, and the separation efficiency was still above 92% after ten cycles of oil/water separation. On the other hand, with increasing separation cycles, the flux decreased from 8422.38 to 3445.52 Lm-2 h-1. The variation of water contact angle values vs. water immersion time was evaluated to examine the particles' durability. After 6 h, water contact angle decreased from 159.2° to 153.3°.
[1] Jamaly, S.; Giwa, A.; Hasan, S.W.; Journal of Environmental Sciences (China). 37, 15–30, 2015.
[2] Chu, Z.; Feng, Y.; Seeger, S.; Angewandte Chemie - International Edition. 54, 2328–2338, 2015.
[3] Chen, P.C.; Xu, Z.K.; Scientific Reports 3, 2776, 2013.
[4] Ivshina, I.B.; Kuyukina, M.S.; Krivoruchko, A.V.; Elkin, A.A.; Makarov, S.O.; Cunningham, C.J.; Peshkur, T.A.; Atlas, R.M.; Philp, J.C.; Environmental Sciences: Processes and Impacts. 17, 1201–1219, 2015.
[5] Wu, J.; An, A.K.; Guo, J.; Lee, E.J.; Farid, M.U.; Jeong, S.; Chemical Engineering Journal 314, 526–536, 2017.
[6] Kayvani Fard, A.; Rhadfi, T.; Mckay, G.; Al-marri, M.; Abdala, A.; Hilal, N.; Hussien, M.A.; Chemical Engineering Journal 293, 90–101, 2016.
[7] Gursoy-Haksevenler, B.H.; Arslan-Alaton, I.; Water Science and Technology 69, 1453–1461, 2014.
[8] Zhang, Y.; Wu, B.; Xu ,H.; Liu, H.; Wang, M.; He, Y.; Pan, B.; Nano Impact 3–4, 22–39, 2016.
[9] Yao, X.; Chen, Q.; Xu, L.; Li, Q.; Song, Y.; Gao, X.; Quéré, D.; Jiang, L.; Advanced Functional Materials 20, 656–662, 2010.
[10] Xue, Z.; Cao, Y.; Liu, N.; Feng, L.; Jiang, L.; Journal of Materials Chemistry A. 2, 2445–2460, 2014.
[11] Navarathna, C.M.; Bombuwala Dewage, N.; Keeton, C.; Pennisson, J.; Henderson, R.; Lashley, B.; Zhang, X.; Hassan, E.B.; Perez, F.; Mohan, D.; Pittman, C.U.; Mlsna, T.; ACS Applied Materials and Interfaces. 12, 9248–9260, 2020.
[12] Hadi, H.J.; Al-Zobai, K.M.M.; Alatabe, M.J.A.; Current Applied Science and Technology 20, 494–511, 2020.
[13] Lundgren, M.; Allan, N.L.; Cosgrove, T.; Langmuir 23, 1187–1194, 2007.
[14] Poulopoulos, S.G.; Voutsas, E.C.; Grigoropoulou, H.P.; Philippopoulos, C.J.; Journal of Hazardous Materials 117, 135–139, 2005.
[15] Nazhipkyzy, M.; Nurgain, A.; Florent, M.; Policicchio, A.; Bandosz, T.J.; Journal of Environmental Chemical Engineering 7(3), 103074, 2019.
[16] Gupta, V.K.; Suhas,; Journal of Environmental Management 90(8), 2313–2342, 2009.
[17] Shayesteh, H.; Rahbar-Kelishami, A.; Norouzbeigi, R.; Desalination and Water Treatment 57, 12822–12831, 2016.
[18] Velayi, E.; Norouzbeigi, R.; Ceramics International 44, 14202–14208, 2018.
[19] Shayesteh, H.; Norouzbeigi, R.; Rahbar-Kelishami, A.; Surfaces and Interfaces 26, 101315, 2021.
[20] Sepehr, M.N.; Amrane, A.; Karimaian, K.A.; Zarrabi, M.; Ghaffari, H.R.; Journal of the Taiwan Institute of Chemical Engineers 45, 635–647, 2014.
[21] Guler, U.A.; Sarioglu, M.; Journal of Environmental Health Science and Engineering 12(79), 1-11, 2014.
[22] Shayesteh, H.; Raji, F.; Rahbar-Kelishami, A.; Surfaces and Interfaces 22, 100806, 2021.
[23] Soleimani, H.; Mahvi, A.H.; Yaghmaeian, K.; Abbasnia, A.; Sharafi, K.; Alimohammadi, M.; Zamanzadeh, M.; Journal of Molecular Liquids 290, 13–17, 2019.
[24] Pratiwi, N.; Arief, S.; Wellia, D.V.; ChemistrySelect 5, 1450–1454, 2020.
[25] Darmawan, A.; Rasyid, S.A.; Astuti, Y.; Surface and Interface Analysis 53, 305–313, 2021.
[26] Liu, P.; Niu, L.; Tao, X.; Li, X.; Zhang, Z.; Yu, L.; Applied Surface Science 447, 656–663, 2018.
[27] Çifçi, D.İ.; Meriç, S.; Desalination and Water Treatment 57, 18131–18143, 2016.
[28] Shayesteh, H.; Rahbar-Kelishami, A.; Norouzbeigi, R.; Journal of Molecular Liquids 221, 1–11, 2016.
[29] Zhu, H.; Duan, R.; Wang, X.; Yang, J.; Wang, J.; Huang, Y.; Xia, F.; Nanoscale 10, 13045–13054, 2018.
[30] Jain, R.; Pitchumani, R.; Langmuir 34, 3159–3169, 2018.
[31] Zhu, X.; Dudchenko, A.; Gu, X.; Jassby, D.; Journal of Membrane Science 529, 159–169, 2017.
[32] Prince, J.A.; Bhuvana, S.; Anbharasi, V.; Ayyanar, N.; Boodhoo, K.V.K.; Singh, G.; Water Research 103, 311–318, 2016.
[33] Li, J.; Cui, M.; Tian, H.; Wu, Y.; Zha, F.; Feng, H.; Tang, X; Separation and Purification Technology 189, 335–340, 2017.
[34] Khosravi, M.; Azizian, S.; Boukherroub, R.; Separation and Purification Technology 215, 573–581, 2019.
[35] Chen, J.; Guo, D.; Huang, C.; Wen, X.; Xu, S.; Cheng, J.; Pi, P.; Materials Letters 233, 328–331, 2018.
[36] Saleh, T.A.; Baig, N.; Alghunaimi, F.I.; Aljuryyed, N.W.; RSC Advances 10, 5088–5097, 2020.
[37] Fan, Y.; He, Y.; Luo, P.; Chen, X.; Liu, B.; Applied Surface Science 368, 435–442, 2016.
[38] Chu, Q.; Liang, J.; Hao, J.; Colloids and Surfaces A: Physicochemical and Engineering Aspects 443, 118–122, 2014.
_||_[1] Jamaly, S.; Giwa, A.; Hasan, S.W.; Journal of Environmental Sciences (China). 37, 15–30, 2015.
[2] Chu, Z.; Feng, Y.; Seeger, S.; Angewandte Chemie - International Edition. 54, 2328–2338, 2015.
[3] Chen, P.C.; Xu, Z.K.; Scientific Reports 3, 2776, 2013.
[4] Ivshina, I.B.; Kuyukina, M.S.; Krivoruchko, A.V.; Elkin, A.A.; Makarov, S.O.; Cunningham, C.J.; Peshkur, T.A.; Atlas, R.M.; Philp, J.C.; Environmental Sciences: Processes and Impacts. 17, 1201–1219, 2015.
[5] Wu, J.; An, A.K.; Guo, J.; Lee, E.J.; Farid, M.U.; Jeong, S.; Chemical Engineering Journal 314, 526–536, 2017.
[6] Kayvani Fard, A.; Rhadfi, T.; Mckay, G.; Al-marri, M.; Abdala, A.; Hilal, N.; Hussien, M.A.; Chemical Engineering Journal 293, 90–101, 2016.
[7] Gursoy-Haksevenler, B.H.; Arslan-Alaton, I.; Water Science and Technology 69, 1453–1461, 2014.
[8] Zhang, Y.; Wu, B.; Xu ,H.; Liu, H.; Wang, M.; He, Y.; Pan, B.; Nano Impact 3–4, 22–39, 2016.
[9] Yao, X.; Chen, Q.; Xu, L.; Li, Q.; Song, Y.; Gao, X.; Quéré, D.; Jiang, L.; Advanced Functional Materials 20, 656–662, 2010.
[10] Xue, Z.; Cao, Y.; Liu, N.; Feng, L.; Jiang, L.; Journal of Materials Chemistry A. 2, 2445–2460, 2014.
[11] Navarathna, C.M.; Bombuwala Dewage, N.; Keeton, C.; Pennisson, J.; Henderson, R.; Lashley, B.; Zhang, X.; Hassan, E.B.; Perez, F.; Mohan, D.; Pittman, C.U.; Mlsna, T.; ACS Applied Materials and Interfaces. 12, 9248–9260, 2020.
[12] Hadi, H.J.; Al-Zobai, K.M.M.; Alatabe, M.J.A.; Current Applied Science and Technology 20, 494–511, 2020.
[13] Lundgren, M.; Allan, N.L.; Cosgrove, T.; Langmuir 23, 1187–1194, 2007.
[14] Poulopoulos, S.G.; Voutsas, E.C.; Grigoropoulou, H.P.; Philippopoulos, C.J.; Journal of Hazardous Materials 117, 135–139, 2005.
[15] Nazhipkyzy, M.; Nurgain, A.; Florent, M.; Policicchio, A.; Bandosz, T.J.; Journal of Environmental Chemical Engineering 7(3), 103074, 2019.
[16] Gupta, V.K.; Suhas,; Journal of Environmental Management 90(8), 2313–2342, 2009.
[17] Shayesteh, H.; Rahbar-Kelishami, A.; Norouzbeigi, R.; Desalination and Water Treatment 57, 12822–12831, 2016.
[18] Velayi, E.; Norouzbeigi, R.; Ceramics International 44, 14202–14208, 2018.
[19] Shayesteh, H.; Norouzbeigi, R.; Rahbar-Kelishami, A.; Surfaces and Interfaces 26, 101315, 2021.
[20] Sepehr, M.N.; Amrane, A.; Karimaian, K.A.; Zarrabi, M.; Ghaffari, H.R.; Journal of the Taiwan Institute of Chemical Engineers 45, 635–647, 2014.
[21] Guler, U.A.; Sarioglu, M.; Journal of Environmental Health Science and Engineering 12(79), 1-11, 2014.
[22] Shayesteh, H.; Raji, F.; Rahbar-Kelishami, A.; Surfaces and Interfaces 22, 100806, 2021.
[23] Soleimani, H.; Mahvi, A.H.; Yaghmaeian, K.; Abbasnia, A.; Sharafi, K.; Alimohammadi, M.; Zamanzadeh, M.; Journal of Molecular Liquids 290, 13–17, 2019.
[24] Pratiwi, N.; Arief, S.; Wellia, D.V.; ChemistrySelect 5, 1450–1454, 2020.
[25] Darmawan, A.; Rasyid, S.A.; Astuti, Y.; Surface and Interface Analysis 53, 305–313, 2021.
[26] Liu, P.; Niu, L.; Tao, X.; Li, X.; Zhang, Z.; Yu, L.; Applied Surface Science 447, 656–663, 2018.
[27] Çifçi, D.İ.; Meriç, S.; Desalination and Water Treatment 57, 18131–18143, 2016.
[28] Shayesteh, H.; Rahbar-Kelishami, A.; Norouzbeigi, R.; Journal of Molecular Liquids 221, 1–11, 2016.
[29] Zhu, H.; Duan, R.; Wang, X.; Yang, J.; Wang, J.; Huang, Y.; Xia, F.; Nanoscale 10, 13045–13054, 2018.
[30] Jain, R.; Pitchumani, R.; Langmuir 34, 3159–3169, 2018.
[31] Zhu, X.; Dudchenko, A.; Gu, X.; Jassby, D.; Journal of Membrane Science 529, 159–169, 2017.
[32] Prince, J.A.; Bhuvana, S.; Anbharasi, V.; Ayyanar, N.; Boodhoo, K.V.K.; Singh, G.; Water Research 103, 311–318, 2016.
[33] Li, J.; Cui, M.; Tian, H.; Wu, Y.; Zha, F.; Feng, H.; Tang, X; Separation and Purification Technology 189, 335–340, 2017.
[34] Khosravi, M.; Azizian, S.; Boukherroub, R.; Separation and Purification Technology 215, 573–581, 2019.
[35] Chen, J.; Guo, D.; Huang, C.; Wen, X.; Xu, S.; Cheng, J.; Pi, P.; Materials Letters 233, 328–331, 2018.
[36] Saleh, T.A.; Baig, N.; Alghunaimi, F.I.; Aljuryyed, N.W.; RSC Advances 10, 5088–5097, 2020.
[37] Fan, Y.; He, Y.; Luo, P.; Chen, X.; Liu, B.; Applied Surface Science 368, 435–442, 2016.
[38] Chu, Q.; Liang, J.; Hao, J.; Colloids and Surfaces A: Physicochemical and Engineering Aspects 443, 118–122, 2014.