Recent Chemical Advances in Pyrrols: Properties, Application and Synthesis of Pyrrols
Subject Areas :Zahra Sadri 1 , Farahnaz Karegar behbahani 2 *
1 - Department of Chemistry, Karaj Branch, Islamic Azad University, Karaj, 314/85313, Iran
2 - دانشیار شیمی آلی گروه شیمی، واحدکرج، دانشگاه آزاد اسلامی، کرج، ایران
Keywords: Synthesis, catalyst, Pyrrole, Amines, Diketones,
Abstract :
Harmful effects of industry on the environment and human health have led chemists to find effective and new methods to eliminate or reduce the negative effects of chemical reactions and also reduce the release of hazardous substances during chemical reactions. With regard to this issue, in this review article, the synthetic methods of pyrrole compounds, their properties and applications, which are one of the most important heterocyclic compounds in organic chemistry, are reported. Pyrrole compounds are of great importance in medicinal chemistry and organic synthesis. These compounds play a very important role in nature. So far, many methods have been proposed for the synthesis of these compounds, the most common of which is the Paul-Noor method with various catalysts. In recent years, the synthesis of biomass-containing macromolecules and other materials, such as pyrrole-containing polymers, has received special attention. All this research requires an effective and high-efficiency method for the synthesis of pyrroles, which is still considered by researchers to optimize the parameters despite the passage of about 100 years.
[1] Keshavarz, N.; Behbahani, F.K.; Chemistry Africa 1, 113-117, 2018.
[2] Anvar, S.G.; Behbahani, F.K.; Eur. Chem. Bull. 8, 301-306, 2019.
[3] Karimirad, F.; Behbahani, F.K.; Polycycl. Aromat. Compd., In press, 2020.
[4] Daloee, T.S.; Behbahani, F.K.; Polycycl. Aromat. Compd., In press, 2020.
[5] Shekarchi, M.; Behbahani, F.K.; Russ. J. Org. Chem. 56, 894-900, 2020.
[6] Hasanzadeh, F.; Behbahani, F.K.; Russ J. Org. Chem. 56, 1070-1076, 2020.
[7] Heravi, M.M.; Behbahani, F.K.; Oskooie, H.A. Chin. J. Chem. 26, 2203-2206, 2008.
[8] Rahmani, P.; Behbahani, F.K.; Inorg.Nano-Met. Chem. 47, 713-716, 2017.
[9] Naseri, M.; Behbahani, F.K.; JBARI. 247-253, 2015.
[10] Behbahani, F.K.; Lotfi, A.; Eur. Chem.Bull. 2, 694-697, 2013.
[11] Mojtahedi, M.M.; Abaee, M.S.; Heravi, M.M.; Behbahani, F.K.; Monatsh. Chem.138, 95-99, 2007.
[12] Oskooie, H.A.; Heravi, M.M.; Sadnia, A.; Jannati, F.; Behbahani, F.K.; Monatsh. Chem. 39, 27-29, 2008.
[13] Behbahani, F.K.; Ziaei, P.; Fakhroueian, Z.; Doragi, N.; Monatsh. Chem 142, 901-906, 2011.
[14] Behbahani, F.K.; Naderi, M.; Russ. J. Gen. Chem. 86, 2804-2806, 2016.
[15] Najafi, E.; Behbahani, F.K.; Russ. J. Org. Chem. 53, 454-458, 2017.
[16] Joule, J.A.; Mills, B.K.; Heterocyclic Chem. 5, 355, 2009.
[17] Idhayadhulla, A.; Kumar, R.S.; Nasser, A.J.A.; Manilal, A.; Bull. Chem. Soc. Ethiop. 26, 429-435, 2012.
[18] Padron, J.M.; Tejedor, D.; Santos-Exposito, A.; Garcia-Tellado, F.; Martin, V.S.; J. Bioorg. Med. Chem. Lett.15, 2487-2490, 2005.
[19] Lehuede, J.; Fauconneau, B.; Barrier, L.; Ourakow, M.; Piriou, A.; Vierfond, J.M.; Eur. J. Med. Chem. 34, 991-996, 1999.
[20] Furstner, A.; Angew. Chem. Int. Ed. 42, 3582-3603, 2003.
[21] Kumar, V.; Awasthi, A.; Salam, A.; Khan, T.J.; Org. Chem. 84, 11596-11603, 2019.
[22] Gholap, S.S.; Eur. J. Med. Chem. 110, 13–31, 2016.
[23] Estevez, V.; Villacampa, M.; Menendez, J.C.; Chem. Soc. Rev. 43, 4633–4657, 2014.
[24] Battersby, A.R.; Nat. Prod. Rep. 17, 507–526, 2000.
[25] Arikawa, Y.; Nishida, H.; Kurasawa, O.; Hasuoka, A.; Hirase, K.; Inatomi, N.; Hori, Y.; Matsukawa, J.; Imanishi, A.; Kondo, M.; Tarui, N.; Hamada, T.; Takagi, T.; Takeuchi, T.; Kajino, M.; J. Med. Chem. 55, 4446 – 4456, 2012.
[26] Atar, A.B.; Jeong, Y.T.; Tetrahedron Lett. 54, 5624, 2013.
[27] Ghorab, M.M.; Ragab, F.A.; Heiba, H.I.; Youssef, H.A.; El-Gazzar, M.G.; Bioorg. Med. Chem. Lett. 20, 6316-20, 2010.
[28] Kaur, R.; Rani, V.; Abbot, V.; Kapoor, Y.; Konar, D.; Kumar, K. J. Pharm. Chem. Chem. Sci. 1, 17-32, 2017.
[29] Harreus, A.L; Ulllmans Encyclopedia of Industrial Chemistry, 2000
[30] Estevez, V; Villacampa, M.; Menendez, J.C.; Chem. Soc. Rev. 43, 4633-4657, 2014.
[31] Wang, X; Lane, B.S.; Sames. D. J.; Am. Chem. Soc. 127, 4996–4997, 2005.
[32] Matiychuk, V.S.; Martyak, R. L.; Obushak, N.D.; Ostapiuk, Y.V. Pidlypnyi N.I.; Chem. Heterocycl. Compnds. 40, 1218–1219, 2004.
[33] Park, S; Chun, M; Song, J; Kim, H.; Korean chem. Soc, 26, 575-578, 2005.
[34] Milgram, B.C; Eskildsen. K; Richter, S.M; Scheidt, W.R; Scheidt, K.A. J.; Org. Chem, 72, 3941-3944, 2007.
[35] Miles, K.C.; Mays, S.M.; Southerland, B.K.; Auvil, T.J.; Ketcha, D.M.; Arkivoc. 14, 181-190, 2009.
[36] Southerland, B.K.; Auvil, T.J.; Ketcha, D.M.; Arkivoc XIV, 181-190, 2009.
[37] Tu, X.C.; Fan, W.; Jiang, B.; Wang, S.L.; Tu, S.J. Tetrahedron 69, 6100-6107, 2013.
[38] Rao, H.S.P.; Jothilingam, S.; Tetrahedron Lett. 42, 6595-6597, 2001.
[39] Tsuji, Y.; Yokoyama, Y.; Huh, K.-T.; Watanabe, Y.; J. Organomet. Chem. 334, 157-167, 1987.
[40] Lian, Y.; Huber, T.; Hesp, K.D.; Bergman, Ellman, R.G.; Angew. Chem. Int. Ed. 52, 629 –633, 2013.
[41] Gao, C.; Xu, H.; Xiong, Y.; Chem. Soc. Rev., 46, 2799-2823, 2017.
[42] Liu, J.; Zhu, J.; Jiang, H.; Wang, W.; Li, J.; Asian J. Chem, 4, 1712-1716, 2009.
[43] Stuart, D.R.; Alsabeh, P.; Kuhn, M.; Fagnou, K.; J. Am. Chem. Soc. 132, 18326-18339, 2010.
[44] Srimani, D.; Ben-David, Y.; Milstein, D.; Angew. Chem. Int. Ed. Engl. 2, 4012-4015, 2013.
[45] Saito, A.; Konishi, O.; Hanzawa, Y.; Org. Lett. 12, 372-374, 2010.
[46] Rakhtshah, J.; Shaabani, B.; Salehzadeh, S.; Moghadam, N.H.; Appl. Organomet. Chem. 33, 4033-4046, 2018.
[47] Rahmatpour, A.; Aalaie, J.; Heteroatom Chem. 22, 85-90, 2011.
[48] Kazemi, K.A.; Nasr-Isfahani, H.; Bamoniri, A. Mol. Divers. 21, 29-36, 2017.
[49] Dou, G.; Shi, C.; Shi, D.; J. Comb. Chem. 10, 810 –813, 2008.
[50] Ngwerume, S.; Camp, J.E.; J. Org. Chem. 75, 6271–6274, 2010.
[51] Zeng, J-C.; Xu, H.; Yu, F.; Zhang, Z.; Tetrahedron Lett. 58, 674-678, 2017.
[52] Milgram, B.C.; Eskildsen, K.; Richter, S.M.; Scheidt, W.R.; Scheidt, K.A.; J. Org. Chem. 72, 3941, 2007.
[53] Milgram, B.C.; Eskildsen, K.; Richter, S.M.; Scheidt, W.R.; Scheidt, K.A.; J. Org. Chem. 72, 3941, 2007.
[54] Danks, T.N.; Tetrahedron Lett. 40, 3957-3960, 1999.
[55] Cárdenas, R.A.V.; Leal, B.O.Q.; Reddy, A.; Bandyopadhyay, D.; Banik, B.K. Org. Med. Chem. Lett. 2, 24-30, 2012.
[56] Smith, K.M.; Goff, D.A.; J. Org. Chem. 51, 657-666, 1986.
[57] Hatamjafari, F.; Montazeri, N.; Turk. J. Chem. 33, 797-802, 2009.
[58] Vaitla, J.; Bayer, A.; Hopmann, K.H.; Angew. Chem. Int. Ed. 56, 1-6, 2017.
[59] Zhang, M.; Neumann, H.; Beller. M.; Angew. Chem. Int. Ed. 52, 597-601, 2013.
[60] Zhang, M.; Fang, X.; Neumann, H.; Beller, M.; J. Am. Chem. Soc. 31, 11384-11388, 2013.
[61] Reddy, L.M.; Chandrashekar, P.A.; Reddy, R.; Reddy, C.K.; Rus. J. Gen. Chem. 85, 155-161, 2015.
[62] Kucukdisli, M.; Ferenc, D.; Heinz, M.; Wiebe, C.; Opatz, T.; Beilstein J. Org. Chem. 10, 466-470, 2014.
[63] Bremner, W.S.; Organ, M.G.; J. Comb. Chem. 10, 142-147, 2008.
[64] Shinde, V.V.; Lee, S.D.; Jeong, Y.S.; Jeong, Y.T.; Tetrahedron Lett. 56, 859-865, 2015.
[65] Aydogan, F.; Basarir, M.; Yolacan, C.; Demir, A.S.; Tetrahedron 63, 9746-9750, 2007.
[66] Yang, Q.; Li, X.Y.; Wu, H.; Xiao, W.J.; Tetrahedron Lett. 47, 3893-3896, 2006.
[67] Dong, H.; Shen, M.; Redford, J.E.; Stokes, B.J.; Pumphrey, A.L.; Driver, T.G.; Org. Lett. 9, 5191-5194, 2007.
[68] Farney, E.P.; Yoon, T.P.; Angew. Chem. Int. Ed. 53, 793-797, 2014.
[69] Bakhrou, N.; Lamaty, F.; Martinez, J.; Colacino, E.; Tetrahedron Lett. 51, 3935-3937, 2010.
[70] Ono, N.; Hironaga, H.; Ono, K.; Kaneko, S.; Murashima, T.; Ueda, T.; Tsukamura, C.; Ogawa, T.; J. Chem. Soc. Perkin Trans.1. 5, 417-423, 1996.
[71] Larionov, O.V; Meijere, A.; Angew. Chem. Int. Ed. 44, 5664-5667, 2005.
[72] Bandyopadhyay, D.; Cruz, J.; Yadav, R.N.; Banik, B.K.; Molecules 17, 11570-11584, 2005.
[73] Behbahani, F.K.; Samadi. M.; J. Chil. Chem. Soc. 60, 2881- 2884, 2015.
[74] Arabpourian, K.; Behbahani, F.K.; Russ. J. Org. Chem. 55, 682–685, 2019.
[75] Minetto, G.; Raveglia, L.F.; Sega, A.; Taddei. M.; Eur. J. Org. Chem., 5277–5288, 2005.
[76] Cheraghi, S.; Saberi, D.; Heydari, A.; Catal. Lett. 144, 1339–1343, 2014.
[77] Veisi, H, Mohammadi, P.; Gholami, J.; Appl. Organomet. Chem. 28, 868–873, 2014.
[78] Bandyopadhyay, D.; Mukherjee, S.; Granados, J.C.; Short, J.D.; Banik, B.K.; Eur. J. Med. Chem. 50, 209–215, 2012.
[79] Banik, B.K.; Samajdar, S.; Banik, I.; J. Org. Chem. 69, 213–216, 2004.
[80] Bhandari, N.; Gaonkar, S.L.; Chem. Heterocycl. Compd. 51, 320–323, 2015.
[81] Zhu, L.; Yu, Y.; Mao, Z.; Huang, X.; Org. Lett. 17, 30-33, 2015.
[82] Aponick, A.; Li, C.-Y.; Malinge, J.; Marques, E.F.; Org. Lett. 11, 4624-4627, 2009.
[83] Saito, A.; Konishi, T.; Hanzawa, Y.; Org. Lett. 12, 372–374, 2010.
[84] Akelis, L.; Rousseau, J.; Juskenas, R.; Dodonova, J.; Rousseau, C.; Menuel, S.; Prevost, D.; Tumkevičius, S.; Monflier, E.; Hapiot, F.; Eur. J. Org. Chem. 2016, 31–35, 2016.
[85] Wu, Y.; Zhu, L.; Yu, Y.; Luo, X.; Huang, X.; J. Org. Chem. 80, 11407-11416, 2015.
[86] Bunrit, A.; Sawadjoon, S.; Tupova, S.; Sjberg, P.J.R.; Samec, J.S.M.; J. Org. Chem. 81, 1450-1460, 2016.
[87] Cai, Y.; Jalan, A.; Kubosumi, A.R.; Org. Lett. 17, 488 -491, 2015.
[88] Kato, H.; Fujimaki, M.; Agric. Biol. Chem. 34, 1071–1077, 1970.
[89] Loader, C.; Andersonc, H.; Can. J. Chem. 59, 2673-2676, 1981.
[90] Eberlin, L.; Crboni, B.; Witing, A.; J. Org. Chem. 80, 6574-6583, 2015.
[91] Shekarchi, M.; Behbahani, F.K.; Lett. Org. Chem., In Press, 2021.
[92] Anari, M.S.; Behbahani, F.K.; Leb. Sci. J. 18, 219-225, 2017
[93] Chen, Z.; Shi, G.; Tang, W.; Jie Sun, J.; Wang, W.; Eur. J. Org. Chem. 2021, 951-955, 2021.
[94] Shasha, Li.; Zeng, G.; Xing, X.; Yang, Z.; Ma, F.; Li, B.; Cheng, W.; Zhang, J.; He, R.; New J. Chem. 45, 1834-1837, 2021.
[95] Louroubi, A.; Nayad, A.; Hasnaoui, A.; Idouhli, R.; Abouelfida, A.; Firdoussi, L.E.; Ali, M.A.; J. Chem., In Press, 2021.
[96] Paciorek, P.; Szklarzewicz, J.; Trzewik, B.; Cież, D.; Nitek, W.; Hodorowicz, M.; Jurowska, A.; J. Org. Chem., In Press, 2021.
_||_[1] Keshavarz, N.; Behbahani, F.K.; Chemistry Africa 1, 113-117, 2018.
[2] Anvar, S.G.; Behbahani, F.K.; Eur. Chem. Bull. 8, 301-306, 2019.
[3] Karimirad, F.; Behbahani, F.K.; Polycycl. Aromat. Compd., In press, 2020.
[4] Daloee, T.S.; Behbahani, F.K.; Polycycl. Aromat. Compd., In press, 2020.
[5] Shekarchi, M.; Behbahani, F.K.; Russ. J. Org. Chem. 56, 894-900, 2020.
[6] Hasanzadeh, F.; Behbahani, F.K.; Russ J. Org. Chem. 56, 1070-1076, 2020.
[7] Heravi, M.M.; Behbahani, F.K.; Oskooie, H.A. Chin. J. Chem. 26, 2203-2206, 2008.
[8] Rahmani, P.; Behbahani, F.K.; Inorg.Nano-Met. Chem. 47, 713-716, 2017.
[9] Naseri, M.; Behbahani, F.K.; JBARI. 247-253, 2015.
[10] Behbahani, F.K.; Lotfi, A.; Eur. Chem.Bull. 2, 694-697, 2013.
[11] Mojtahedi, M.M.; Abaee, M.S.; Heravi, M.M.; Behbahani, F.K.; Monatsh. Chem.138, 95-99, 2007.
[12] Oskooie, H.A.; Heravi, M.M.; Sadnia, A.; Jannati, F.; Behbahani, F.K.; Monatsh. Chem. 39, 27-29, 2008.
[13] Behbahani, F.K.; Ziaei, P.; Fakhroueian, Z.; Doragi, N.; Monatsh. Chem 142, 901-906, 2011.
[14] Behbahani, F.K.; Naderi, M.; Russ. J. Gen. Chem. 86, 2804-2806, 2016.
[15] Najafi, E.; Behbahani, F.K.; Russ. J. Org. Chem. 53, 454-458, 2017.
[16] Joule, J.A.; Mills, B.K.; Heterocyclic Chem. 5, 355, 2009.
[17] Idhayadhulla, A.; Kumar, R.S.; Nasser, A.J.A.; Manilal, A.; Bull. Chem. Soc. Ethiop. 26, 429-435, 2012.
[18] Padron, J.M.; Tejedor, D.; Santos-Exposito, A.; Garcia-Tellado, F.; Martin, V.S.; J. Bioorg. Med. Chem. Lett.15, 2487-2490, 2005.
[19] Lehuede, J.; Fauconneau, B.; Barrier, L.; Ourakow, M.; Piriou, A.; Vierfond, J.M.; Eur. J. Med. Chem. 34, 991-996, 1999.
[20] Furstner, A.; Angew. Chem. Int. Ed. 42, 3582-3603, 2003.
[21] Kumar, V.; Awasthi, A.; Salam, A.; Khan, T.J.; Org. Chem. 84, 11596-11603, 2019.
[22] Gholap, S.S.; Eur. J. Med. Chem. 110, 13–31, 2016.
[23] Estevez, V.; Villacampa, M.; Menendez, J.C.; Chem. Soc. Rev. 43, 4633–4657, 2014.
[24] Battersby, A.R.; Nat. Prod. Rep. 17, 507–526, 2000.
[25] Arikawa, Y.; Nishida, H.; Kurasawa, O.; Hasuoka, A.; Hirase, K.; Inatomi, N.; Hori, Y.; Matsukawa, J.; Imanishi, A.; Kondo, M.; Tarui, N.; Hamada, T.; Takagi, T.; Takeuchi, T.; Kajino, M.; J. Med. Chem. 55, 4446 – 4456, 2012.
[26] Atar, A.B.; Jeong, Y.T.; Tetrahedron Lett. 54, 5624, 2013.
[27] Ghorab, M.M.; Ragab, F.A.; Heiba, H.I.; Youssef, H.A.; El-Gazzar, M.G.; Bioorg. Med. Chem. Lett. 20, 6316-20, 2010.
[28] Kaur, R.; Rani, V.; Abbot, V.; Kapoor, Y.; Konar, D.; Kumar, K. J. Pharm. Chem. Chem. Sci. 1, 17-32, 2017.
[29] Harreus, A.L; Ulllmans Encyclopedia of Industrial Chemistry, 2000
[30] Estevez, V; Villacampa, M.; Menendez, J.C.; Chem. Soc. Rev. 43, 4633-4657, 2014.
[31] Wang, X; Lane, B.S.; Sames. D. J.; Am. Chem. Soc. 127, 4996–4997, 2005.
[32] Matiychuk, V.S.; Martyak, R. L.; Obushak, N.D.; Ostapiuk, Y.V. Pidlypnyi N.I.; Chem. Heterocycl. Compnds. 40, 1218–1219, 2004.
[33] Park, S; Chun, M; Song, J; Kim, H.; Korean chem. Soc, 26, 575-578, 2005.
[34] Milgram, B.C; Eskildsen. K; Richter, S.M; Scheidt, W.R; Scheidt, K.A. J.; Org. Chem, 72, 3941-3944, 2007.
[35] Miles, K.C.; Mays, S.M.; Southerland, B.K.; Auvil, T.J.; Ketcha, D.M.; Arkivoc. 14, 181-190, 2009.
[36] Southerland, B.K.; Auvil, T.J.; Ketcha, D.M.; Arkivoc XIV, 181-190, 2009.
[37] Tu, X.C.; Fan, W.; Jiang, B.; Wang, S.L.; Tu, S.J. Tetrahedron 69, 6100-6107, 2013.
[38] Rao, H.S.P.; Jothilingam, S.; Tetrahedron Lett. 42, 6595-6597, 2001.
[39] Tsuji, Y.; Yokoyama, Y.; Huh, K.-T.; Watanabe, Y.; J. Organomet. Chem. 334, 157-167, 1987.
[40] Lian, Y.; Huber, T.; Hesp, K.D.; Bergman, Ellman, R.G.; Angew. Chem. Int. Ed. 52, 629 –633, 2013.
[41] Gao, C.; Xu, H.; Xiong, Y.; Chem. Soc. Rev., 46, 2799-2823, 2017.
[42] Liu, J.; Zhu, J.; Jiang, H.; Wang, W.; Li, J.; Asian J. Chem, 4, 1712-1716, 2009.
[43] Stuart, D.R.; Alsabeh, P.; Kuhn, M.; Fagnou, K.; J. Am. Chem. Soc. 132, 18326-18339, 2010.
[44] Srimani, D.; Ben-David, Y.; Milstein, D.; Angew. Chem. Int. Ed. Engl. 2, 4012-4015, 2013.
[45] Saito, A.; Konishi, O.; Hanzawa, Y.; Org. Lett. 12, 372-374, 2010.
[46] Rakhtshah, J.; Shaabani, B.; Salehzadeh, S.; Moghadam, N.H.; Appl. Organomet. Chem. 33, 4033-4046, 2018.
[47] Rahmatpour, A.; Aalaie, J.; Heteroatom Chem. 22, 85-90, 2011.
[48] Kazemi, K.A.; Nasr-Isfahani, H.; Bamoniri, A. Mol. Divers. 21, 29-36, 2017.
[49] Dou, G.; Shi, C.; Shi, D.; J. Comb. Chem. 10, 810 –813, 2008.
[50] Ngwerume, S.; Camp, J.E.; J. Org. Chem. 75, 6271–6274, 2010.
[51] Zeng, J-C.; Xu, H.; Yu, F.; Zhang, Z.; Tetrahedron Lett. 58, 674-678, 2017.
[52] Milgram, B.C.; Eskildsen, K.; Richter, S.M.; Scheidt, W.R.; Scheidt, K.A.; J. Org. Chem. 72, 3941, 2007.
[53] Milgram, B.C.; Eskildsen, K.; Richter, S.M.; Scheidt, W.R.; Scheidt, K.A.; J. Org. Chem. 72, 3941, 2007.
[54] Danks, T.N.; Tetrahedron Lett. 40, 3957-3960, 1999.
[55] Cárdenas, R.A.V.; Leal, B.O.Q.; Reddy, A.; Bandyopadhyay, D.; Banik, B.K. Org. Med. Chem. Lett. 2, 24-30, 2012.
[56] Smith, K.M.; Goff, D.A.; J. Org. Chem. 51, 657-666, 1986.
[57] Hatamjafari, F.; Montazeri, N.; Turk. J. Chem. 33, 797-802, 2009.
[58] Vaitla, J.; Bayer, A.; Hopmann, K.H.; Angew. Chem. Int. Ed. 56, 1-6, 2017.
[59] Zhang, M.; Neumann, H.; Beller. M.; Angew. Chem. Int. Ed. 52, 597-601, 2013.
[60] Zhang, M.; Fang, X.; Neumann, H.; Beller, M.; J. Am. Chem. Soc. 31, 11384-11388, 2013.
[61] Reddy, L.M.; Chandrashekar, P.A.; Reddy, R.; Reddy, C.K.; Rus. J. Gen. Chem. 85, 155-161, 2015.
[62] Kucukdisli, M.; Ferenc, D.; Heinz, M.; Wiebe, C.; Opatz, T.; Beilstein J. Org. Chem. 10, 466-470, 2014.
[63] Bremner, W.S.; Organ, M.G.; J. Comb. Chem. 10, 142-147, 2008.
[64] Shinde, V.V.; Lee, S.D.; Jeong, Y.S.; Jeong, Y.T.; Tetrahedron Lett. 56, 859-865, 2015.
[65] Aydogan, F.; Basarir, M.; Yolacan, C.; Demir, A.S.; Tetrahedron 63, 9746-9750, 2007.
[66] Yang, Q.; Li, X.Y.; Wu, H.; Xiao, W.J.; Tetrahedron Lett. 47, 3893-3896, 2006.
[67] Dong, H.; Shen, M.; Redford, J.E.; Stokes, B.J.; Pumphrey, A.L.; Driver, T.G.; Org. Lett. 9, 5191-5194, 2007.
[68] Farney, E.P.; Yoon, T.P.; Angew. Chem. Int. Ed. 53, 793-797, 2014.
[69] Bakhrou, N.; Lamaty, F.; Martinez, J.; Colacino, E.; Tetrahedron Lett. 51, 3935-3937, 2010.
[70] Ono, N.; Hironaga, H.; Ono, K.; Kaneko, S.; Murashima, T.; Ueda, T.; Tsukamura, C.; Ogawa, T.; J. Chem. Soc. Perkin Trans.1. 5, 417-423, 1996.
[71] Larionov, O.V; Meijere, A.; Angew. Chem. Int. Ed. 44, 5664-5667, 2005.
[72] Bandyopadhyay, D.; Cruz, J.; Yadav, R.N.; Banik, B.K.; Molecules 17, 11570-11584, 2005.
[73] Behbahani, F.K.; Samadi. M.; J. Chil. Chem. Soc. 60, 2881- 2884, 2015.
[74] Arabpourian, K.; Behbahani, F.K.; Russ. J. Org. Chem. 55, 682–685, 2019.
[75] Minetto, G.; Raveglia, L.F.; Sega, A.; Taddei. M.; Eur. J. Org. Chem., 5277–5288, 2005.
[76] Cheraghi, S.; Saberi, D.; Heydari, A.; Catal. Lett. 144, 1339–1343, 2014.
[77] Veisi, H, Mohammadi, P.; Gholami, J.; Appl. Organomet. Chem. 28, 868–873, 2014.
[78] Bandyopadhyay, D.; Mukherjee, S.; Granados, J.C.; Short, J.D.; Banik, B.K.; Eur. J. Med. Chem. 50, 209–215, 2012.
[79] Banik, B.K.; Samajdar, S.; Banik, I.; J. Org. Chem. 69, 213–216, 2004.
[80] Bhandari, N.; Gaonkar, S.L.; Chem. Heterocycl. Compd. 51, 320–323, 2015.
[81] Zhu, L.; Yu, Y.; Mao, Z.; Huang, X.; Org. Lett. 17, 30-33, 2015.
[82] Aponick, A.; Li, C.-Y.; Malinge, J.; Marques, E.F.; Org. Lett. 11, 4624-4627, 2009.
[83] Saito, A.; Konishi, T.; Hanzawa, Y.; Org. Lett. 12, 372–374, 2010.
[84] Akelis, L.; Rousseau, J.; Juskenas, R.; Dodonova, J.; Rousseau, C.; Menuel, S.; Prevost, D.; Tumkevičius, S.; Monflier, E.; Hapiot, F.; Eur. J. Org. Chem. 2016, 31–35, 2016.
[85] Wu, Y.; Zhu, L.; Yu, Y.; Luo, X.; Huang, X.; J. Org. Chem. 80, 11407-11416, 2015.
[86] Bunrit, A.; Sawadjoon, S.; Tupova, S.; Sjberg, P.J.R.; Samec, J.S.M.; J. Org. Chem. 81, 1450-1460, 2016.
[87] Cai, Y.; Jalan, A.; Kubosumi, A.R.; Org. Lett. 17, 488 -491, 2015.
[88] Kato, H.; Fujimaki, M.; Agric. Biol. Chem. 34, 1071–1077, 1970.
[89] Loader, C.; Andersonc, H.; Can. J. Chem. 59, 2673-2676, 1981.
[90] Eberlin, L.; Crboni, B.; Witing, A.; J. Org. Chem. 80, 6574-6583, 2015.
[91] Shekarchi, M.; Behbahani, F.K.; Lett. Org. Chem., In Press, 2021.
[92] Anari, M.S.; Behbahani, F.K.; Leb. Sci. J. 18, 219-225, 2017
[93] Chen, Z.; Shi, G.; Tang, W.; Jie Sun, J.; Wang, W.; Eur. J. Org. Chem. 2021, 951-955, 2021.
[94] Shasha, Li.; Zeng, G.; Xing, X.; Yang, Z.; Ma, F.; Li, B.; Cheng, W.; Zhang, J.; He, R.; New J. Chem. 45, 1834-1837, 2021.
[95] Louroubi, A.; Nayad, A.; Hasnaoui, A.; Idouhli, R.; Abouelfida, A.; Firdoussi, L.E.; Ali, M.A.; J. Chem., In Press, 2021.
[96] Paciorek, P.; Szklarzewicz, J.; Trzewik, B.; Cież, D.; Nitek, W.; Hodorowicz, M.; Jurowska, A.; J. Org. Chem., In Press, 2021.