Design and synthesis of double shell hollow spheres of CuAl2O4 as a heterogeneous nanocatalyst for the synthesis of 1,2,3-Triazole compounds
Subject Areas :Reza Khalifeh 1 * , Mohammad Karimi 2 , Maryam Rajabzadeh 3
1 - Department of Chemistry. Shiraz University of Technology. Shiraz. Iran
2 - Department of Chemistry-Shiraz University of Technology-shiraz-Iran
3 - Department of Chemistry- Shiraz University of Technology-Shiraz-Iran
Keywords: 2, 1, Heterogeneous catalyst, spinel CuAl2O4, 3-triazoles,
Abstract :
In this study, hollow structures of CuAl2O4 were prepared by using a simple hydrothermal method and carbon sphere as a hard template. The double shell hollow structures of CuAl2O4 were characterized by transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDS) and X-ray diffraction (XRD) analysis. The catalytic performance of this hollow nanostructure was evaluated for the synthesis of 1,2,3-triazole derivatives via the one pot cycloaddition reaction of benzyl halides, alkyl halides or epoxides with sodium azide and phenyl acetylene. Various factors such as the effect of solvent and different amounts of catalyst on the reaction efficiency were discussed. A variety of epoxides, benzyl or alkyl halides was used to afford the corresponding 1,2,3-triazole derivatives under the optimal reaction condition (Water/EtOH(1:1), 80°C, 10 min, 2 mol% of catalyst). The hollow structures of CuAl2O4 catalyst was readily removed from the reaction mixture by filtration and reused for five times without significant loss of catalytic activity.
[1] Zhou, C.H.; Wang, Y.; Curr. Med. Chem. 19, 239-80, 2012.
[2] Sharghi, H.; Khalifeh, R.; Doroodmand, M.M.; Adv. Synth. Catal. 351, 207-18, 2009.
[3] Huisgen, R.; Angew Chem. Int. Ed. 2, 565-98, 1963.
[4] Meldal, M., Tornøe, C.W.; Chem. Rev. 108, 2952-3015, 2008.
[5] Haldon, E.; Nicasio, M.C.; Perez, P.J.; Org. Biomol. Chem. 13, 9528-50, 2015.
[6] Alonso, F.; Moglie, Y.; Radivoy, G.; Acc. Chem. Res. 48, 2516-28, 2015.
[7] Pérez, J.M.; Cano, R., Ramón, D.J.; RSC Adv. 4, 23943-51, 2014.
[8] Saberi, A.; Golestani-Fard, F.; Sarpoolaky, H.; Willert-Porada, M.; Gerdes, T., Simon, R.; J. Alloys Compd. 462, 142-6, 2008.
[9] Ryu, H.; Bartwal, K.; J. Alloys Compd. 461, 395-8, 2008.
[10] Zawadzki, M.; J. Alloys Compd. 439, 312-20, 2007.
[11] Ragupathi, C.; Vijaya, J.J.; Kumar, R.T., Kennedy, L.J.; J. Mol. Struct. 1079, 182-8, 2015.
[12] Lv, W.; Liu, B.; Qiu, Q.; Wang, F.; Luo, Z.; Zhang, P., Wei, S.; J. Alloys Compd. 479(1-2), 480-3, 2009.
[13] Zeng, H.; Rice, P.M.; Wang, S.X., Sun, S.; J. Am. Chem. Soc. 126, 11458-9, 2004.
[14] Qian, H.S.; Hu, Y.; Li, Z.Q.; Yang, X.Y.; Li, L.C.; Zhang, X.T., Xu, R..; J. Phys. Chem. C 114(41), 17455-9, 2010.
[15] Zhu, Y.; Shi, J.; Shen, W.; Dong, X.; Feng, J.; Ruan, M., Li, Y.; Angew Chem. Int. Ed. 44(32), 5083-7, 2005.
[16] Qi, J.; Lai, X.; Wang, J.; Tang, H.; Ren, H.; Yang, Y., Jin, Q.; Zhang, L.; Yu, R.; Ma, G.; Su, Z.; Zhao, H. Wang, D.; Chem. Soc. Rev. 44, 6749-73, 2015.
[17] Wang, X.; Feng, J.; Bai, Y.; Zhang, Q., Yin, Y.; Chem. Rev. 116, 10983-1060, 2016.
[18] Prieto, G.; TüYsüZ, H.; Duyckaerts, N.; Knossalla, J.; Wang, G.H., SchüTh, F.; Chem. Rev. 116, 14056-119, 2016.
[19] Sasidharan, M.; Nakashima, K.; Acc. Chem. Res. 47, 157-67, 2014.
[20] Rajabzadeh, M.; Khalifeh, R.; Eshghi, H.; Bakavoli, M.; J. Catal. 360, 261-9, 2018.
_||_[1] Zhou, C.H.; Wang, Y.; Curr. Med. Chem. 19, 239-80, 2012.
[2] Sharghi, H.; Khalifeh, R.; Doroodmand, M.M.; Adv. Synth. Catal. 351, 207-18, 2009.
[3] Huisgen, R.; Angew Chem. Int. Ed. 2, 565-98, 1963.
[4] Meldal, M., Tornøe, C.W.; Chem. Rev. 108, 2952-3015, 2008.
[5] Haldon, E.; Nicasio, M.C.; Perez, P.J.; Org. Biomol. Chem. 13, 9528-50, 2015.
[6] Alonso, F.; Moglie, Y.; Radivoy, G.; Acc. Chem. Res. 48, 2516-28, 2015.
[7] Pérez, J.M.; Cano, R., Ramón, D.J.; RSC Adv. 4, 23943-51, 2014.
[8] Saberi, A.; Golestani-Fard, F.; Sarpoolaky, H.; Willert-Porada, M.; Gerdes, T., Simon, R.; J. Alloys Compd. 462, 142-6, 2008.
[9] Ryu, H.; Bartwal, K.; J. Alloys Compd. 461, 395-8, 2008.
[10] Zawadzki, M.; J. Alloys Compd. 439, 312-20, 2007.
[11] Ragupathi, C.; Vijaya, J.J.; Kumar, R.T., Kennedy, L.J.; J. Mol. Struct. 1079, 182-8, 2015.
[12] Lv, W.; Liu, B.; Qiu, Q.; Wang, F.; Luo, Z.; Zhang, P., Wei, S.; J. Alloys Compd. 479(1-2), 480-3, 2009.
[13] Zeng, H.; Rice, P.M.; Wang, S.X., Sun, S.; J. Am. Chem. Soc. 126, 11458-9, 2004.
[14] Qian, H.S.; Hu, Y.; Li, Z.Q.; Yang, X.Y.; Li, L.C.; Zhang, X.T., Xu, R..; J. Phys. Chem. C 114(41), 17455-9, 2010.
[15] Zhu, Y.; Shi, J.; Shen, W.; Dong, X.; Feng, J.; Ruan, M., Li, Y.; Angew Chem. Int. Ed. 44(32), 5083-7, 2005.
[16] Qi, J.; Lai, X.; Wang, J.; Tang, H.; Ren, H.; Yang, Y., Jin, Q.; Zhang, L.; Yu, R.; Ma, G.; Su, Z.; Zhao, H. Wang, D.; Chem. Soc. Rev. 44, 6749-73, 2015.
[17] Wang, X.; Feng, J.; Bai, Y.; Zhang, Q., Yin, Y.; Chem. Rev. 116, 10983-1060, 2016.
[18] Prieto, G.; TüYsüZ, H.; Duyckaerts, N.; Knossalla, J.; Wang, G.H., SchüTh, F.; Chem. Rev. 116, 14056-119, 2016.
[19] Sasidharan, M.; Nakashima, K.; Acc. Chem. Res. 47, 157-67, 2014.
[20] Rajabzadeh, M.; Khalifeh, R.; Eshghi, H.; Bakavoli, M.; J. Catal. 360, 261-9, 2018.