The effect of post-synthesis modification of Faujasite zeolites (X, Y) on the catalytic performance of diesel hydrodesulfurization process
Subject Areas :Hamid Karami 1 , Mohammad Kazemeini 2 , Saeed Soltanali 3 , Mehdi Rashidzadeh 4
1 - Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
2 - Professor, Dept. of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
3 - Catalysis Technologies Development Division,Research Institute of Petroleum Industry (RIPI), Tehran, Iran
4 - Catalysis Technologies Development Division,Research Institute of Petroleum Industry (RIPI), Tehran, Iran
Keywords: Hydrodesulfurization, Faujasite zeolite, Dealumination, Post-synthetic,
Abstract :
Faujasite zeolites are considered as the main and important component of catalysts of hydrotreating process; In order to zeolites to be achieved higher acidity and volume of mesopores, post-synthetic modification method (dealumination) with different techniques such as: acid treatment (H4EDTA) and thermal (calcination) was used. The dealumination process, while maintaining the crystal lattice of zeolite, led to exit of structural aluminum of zeolite and increase of acidity. NH3-TPD, BET, FESEM, FT-IR, AAS, XRD analyzes were used to investigate the physicochemical properties of zeolite. Atomic adsorption analysis shows an increase in the ratio of silicon to aluminum in the modified zeolite that in the De-Y and De-X zeolites, the Si/ Al ratio increased from 2.27 and 1.2 to 7.8 and 2.2 from the initial values, respectively. Measurement of surface area of zeolite and pore volume were performed by BET and BJH methods; decrease in surface area and increase in mesopore volume in modified zeolites is evident. During the dealumination process, acidity of De-Y zeolite increased from 0.72 mmol NH3 /g to 1.96 mmol NH3 /g and in De-X zeolite, the acidity increased from 0.95 mmol NH3/ g to 0.32 mmol (Na-X). Modified zeolites were used in the synthesis of HDS catalyst. The results showed that the synthesized catalysts had a better performance in removing sulfur compounds and by increasing acidity, the removal of sulfur compounds increased so that Cat-De-Y catalyst has the highest acidity and sulfur removal rate (Conversion= 89%).
[1] Zhou, W.; Wei, Q.; Zhou, Y.; Liu, M.; Ding, S.; Yang, Q.; Appl. Catal. B 238, 212–24, 2018.
[2] Rangarajan, S.; Mavrikakis, M.; ACS Catal. 7, 501–9, 2017.
[3] van Haandel, L.; Bremmer, M.; Kooyman, PJ.; Van Veen, J.; Weber, T.; Hensen, E.; ACS Catal. 5, 7276–7287, 2015.
[4] Stanislaus, A.; Marafi, A.; Rana, M.S.; Catal. Today. 153,1–68, 2010.
[5] Tao, X.; Zhou Y.; Wei, Q.; Yu, G.; Cui, Q.; Liu, J.; Liu, T.; Fuel Process. Technol. 118, 200–207, 2014.
[6] López-Benítez, A.; Berhault, G.; Guevara-Lara, A.; Appl. Catal. B 213, 28–41, 2017.
[7] Hajjar, Z.; Soltanali, S.; Tayyebi, S.; Masoumi, M.; Journal of Applied Research in Chemistry 12(3), 71-78, 1397.
[8] Bej, S.K.; Maity, S.K.; Turaga, U.T.; Energy Fuels 18, 1227–1237, 2004.
[9] Shi, Y.; Wang, G.; Mei, J.; Xiao, C.; Hu, D.; Wang, A.; Song, Y.; Ni, Y.; Jiang, G.; Duan, A.; ACS Omega. 5,15576–15585, 2020.
[10] Okamoto, Y.; Bull. Chem. Soc. Jpn. 87, 20–58, 2014.
[11] Verboekend, D.; Keller, T.C.; Mitchell, S.; Pérez‐Ramírez.; J.; Adv. Funct. Mater. 23,1923–1934, 2013.
[12] Zhang, D.; Jin, C.; Zou, M.; Huang, S.; Chem. Eur. J. 25, 2675–2683, 2019.
[13] Verboekend, D.; Vilé, G, .;Pérez-ramírez, J.; Adv. Funct. Mater. 916–928, 2012.
[14] Verboekend, D.; Nuttens, N.; Locus, R.; Van Aelst, J.; Verolme, P.; Groen, JC.; Pérez‐Ramírez, J.; Sels, B.F.; Chem. Soc. Rev. 45, 3331–3352, 2016.
[15] Karge, H.G.; Beyer, H.K.; Solid-State Ion Exchange in Microporous and Mesoporous Materials (Chp. 2) in: "Molecular Sieves (Science and Technology)", Vol. 3, Springer, Berlin, 2002.
[16] Asadi, A.A.; Alavi, S.M.; Royaee, S.J.; Bazmi, M.; Microporous Mesoporous Mater. 259, 142–154, 2018.
[17] Lutz, W.; Adv. Mater. Sci. Eng. 22, 102-120, 2014.
[18] Gola, A.; Rebours, B.; Milazzo, E.; Lynch, J.; Benazzi, E.; Lacombe, S.; Delevoye, L.; Fernandez, C.; Microporous Mesoporous Mater. 40, 73–83, 2000.
[19] Asadi, A.A.; Royaee, S.J.; Alavi, S.M.; Bazmi, M.; Fuel Process Technol. 187, 36–51, 2019.
[20] Wang, W.; Zhang, W.; Chen, Y.; Wen, X.; Li, H.; Yuan, D.; Guo, Q.; Ren, S.; Pang, X.; Shen, B.; J. Catal. 362, 94–105, 2018.
[21] Baerlocher, C.; McCusker, L.B.; Olson, DH.; Atlas of zeolite framework types. Elsevier, USA, 2007.
[22] Yue, MB.; Xue, T.; Jiao, WQ.; Wang, YM.; He, M-Y.; Microporous Mesoporous Mater. 159, 50–56, 2012.
[23] Li, K.; Valla, J.; Garcia-Martinez, J.; ChemCatChem 6, 46–66, 2014.
[24] Chen, X.; Liu, X.; Wang, L.; Li, M.; Williams, C.T.; Liang, C.H.; RSC Adv. 3, 1728-1731, 2013.
[25] Marín, C.; Escobar, J.; Galván, E.; Murrieta, F.; Zárate, R.; Vaca, H.; Fuel Process Technol. 86, 391–405, 2005.
[26] Kunisada, N.; Choi, K.-H.; Korai, Y.; Mochida, I.; Nakano, K.; Appl. Catal. A 276, 51–59, 2004.
[27] Dědeček, J.; Sobalík, Z.; Wichterlová, B.; Catal. Rev. 54, 135–223, 2012.
[28] Chen, W.; Maugé, F.; van Gestel, J.; Nie, H.; Li, D.; Long, X.; J. Catal. 304, 47–62, 2013.
[29] Han, W.; Nie, H.; Long, X.; Li, M.; Yang, Q.; Li, D.; Catal. Today 292, 58–66, 2017.
_||_
[1] Zhou, W.; Wei, Q.; Zhou, Y.; Liu, M.; Ding, S.; Yang, Q.; Appl. Catal. B 238, 212–24, 2018.
[2] Rangarajan, S.; Mavrikakis, M.; ACS Catal. 7, 501–9, 2017.
[3] van Haandel, L.; Bremmer, M.; Kooyman, PJ.; Van Veen, J.; Weber, T.; Hensen, E.; ACS Catal. 5, 7276–7287, 2015.
[4] Stanislaus, A.; Marafi, A.; Rana, M.S.; Catal. Today. 153,1–68, 2010.
[5] Tao, X.; Zhou Y.; Wei, Q.; Yu, G.; Cui, Q.; Liu, J.; Liu, T.; Fuel Process. Technol. 118, 200–207, 2014.
[6] López-Benítez, A.; Berhault, G.; Guevara-Lara, A.; Appl. Catal. B 213, 28–41, 2017.
[7] Hajjar, Z.; Soltanali, S.; Tayyebi, S.; Masoumi, M.; Journal of Applied Research in Chemistry 12(3), 71-78, 1397.
[8] Bej, S.K.; Maity, S.K.; Turaga, U.T.; Energy Fuels 18, 1227–1237, 2004.
[9] Shi, Y.; Wang, G.; Mei, J.; Xiao, C.; Hu, D.; Wang, A.; Song, Y.; Ni, Y.; Jiang, G.; Duan, A.; ACS Omega. 5,15576–15585, 2020.
[10] Okamoto, Y.; Bull. Chem. Soc. Jpn. 87, 20–58, 2014.
[11] Verboekend, D.; Keller, T.C.; Mitchell, S.; Pérez‐Ramírez.; J.; Adv. Funct. Mater. 23,1923–1934, 2013.
[12] Zhang, D.; Jin, C.; Zou, M.; Huang, S.; Chem. Eur. J. 25, 2675–2683, 2019.
[13] Verboekend, D.; Vilé, G, .;Pérez-ramírez, J.; Adv. Funct. Mater. 916–928, 2012.
[14] Verboekend, D.; Nuttens, N.; Locus, R.; Van Aelst, J.; Verolme, P.; Groen, JC.; Pérez‐Ramírez, J.; Sels, B.F.; Chem. Soc. Rev. 45, 3331–3352, 2016.
[15] Karge, H.G.; Beyer, H.K.; Solid-State Ion Exchange in Microporous and Mesoporous Materials (Chp. 2) in: "Molecular Sieves (Science and Technology)", Vol. 3, Springer, Berlin, 2002.
[16] Asadi, A.A.; Alavi, S.M.; Royaee, S.J.; Bazmi, M.; Microporous Mesoporous Mater. 259, 142–154, 2018.
[17] Lutz, W.; Adv. Mater. Sci. Eng. 22, 102-120, 2014.
[18] Gola, A.; Rebours, B.; Milazzo, E.; Lynch, J.; Benazzi, E.; Lacombe, S.; Delevoye, L.; Fernandez, C.; Microporous Mesoporous Mater. 40, 73–83, 2000.
[19] Asadi, A.A.; Royaee, S.J.; Alavi, S.M.; Bazmi, M.; Fuel Process Technol. 187, 36–51, 2019.
[20] Wang, W.; Zhang, W.; Chen, Y.; Wen, X.; Li, H.; Yuan, D.; Guo, Q.; Ren, S.; Pang, X.; Shen, B.; J. Catal. 362, 94–105, 2018.
[21] Baerlocher, C.; McCusker, L.B.; Olson, DH.; Atlas of zeolite framework types. Elsevier, USA, 2007.
[22] Yue, MB.; Xue, T.; Jiao, WQ.; Wang, YM.; He, M-Y.; Microporous Mesoporous Mater. 159, 50–56, 2012.
[23] Li, K.; Valla, J.; Garcia-Martinez, J.; ChemCatChem 6, 46–66, 2014.
[24] Chen, X.; Liu, X.; Wang, L.; Li, M.; Williams, C.T.; Liang, C.H.; RSC Adv. 3, 1728-1731, 2013.
[25] Marín, C.; Escobar, J.; Galván, E.; Murrieta, F.; Zárate, R.; Vaca, H.; Fuel Process Technol. 86, 391–405, 2005.
[26] Kunisada, N.; Choi, K.-H.; Korai, Y.; Mochida, I.; Nakano, K.; Appl. Catal. A 276, 51–59, 2004.
[27] Dědeček, J.; Sobalík, Z.; Wichterlová, B.; Catal. Rev. 54, 135–223, 2012.
[28] Chen, W.; Maugé, F.; van Gestel, J.; Nie, H.; Li, D.; Long, X.; J. Catal. 304, 47–62, 2013.
[29] Han, W.; Nie, H.; Long, X.; Li, M.; Yang, Q.; Li, D.; Catal. Today 292, 58–66, 2017.