Synthesis and modification of ZSM-22 zeolite surface by Fe, Zr and Sr metals and studying their catalytic properties in biodiesel production reaction
Subject Areas :maryam haghighi 1 * , Mehranoosh Fereidooni 2
1 - استادیار مهندسی شیمی، گروه شیمی، دانشکده فیزیک و شیمی، دانشگاه الزهرا (س)، تهران، ایران
2 - Assistant Prof. Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, Iran
Keywords: Biodiesel, Zirconium, strontium, Esterification, ZSM-22,
Abstract :
In this study, zeolite ZSM-22 was synthesized via hydrothermal method. The obtained precipitate and ammonium nitrate solution were mixed together under reflux condition and the hydrogen was loaded into its structure. Zeolite synthesis conditions such as pH, synthesis time, and Si/Al ratio were also optimized during synthesis. Subsequently, to enhance the catalytic efficiency of the zeolites, Fe, Zr, and Sr were loaded onto the H-ZSM-22 structure during synthesis. Also, the activity of the synthesized catalysts and their effect on the process of esterification of oleic acid was investigated. To increase the efficiency of the esterification process, parameters such as temperature, reaction time, catalyst weight, molar ratio of oil to alcohol, and pH were optimized using potassium hydroxide salt. The results show that the yield of oleic acid at optimum conditions such as 0.3 g catalyst, temperature 70 ℃, 1:10 mmol molar ratio of oil to alcohol, 48 h duration and absence of potassium hydroxide, and using of the 22-Zr-H-ZSM catalyst is 48% that is more than of the other synthesized catalysts.
[1] Bessa, L.; Robustillo, M.D.; Marques Tadini, C.C.; Pessôa Filho, P.de A.; Fuel. 237, 1132–1140, 2019.
[2] Semwal, S.; Arora, A.K.; Badoni, R. P.; Tuli, D.K.; Bioresour. Technol. 102(3), 2151–2161, 2011.
[3] Kant Bhatia, Sh.; Fuel 285, 119-117, 2021.
[4] Chen, H.; Ding, M.; Li, Y.; Xu, H.; Li, Y.; Wei, Z.; J. Traffic Transp. Eng. 7(6), 791–807, 2020.
[5] Kralova, I.; Sjöblom, J.; J. Dispers. Sci. Technol. 31(3), 409–425, 2010.
[6] Meneghetti, S.M.P.; Meneghetti, M.R.; Serra, T.M.; Barbosa, D.C.; Wolf, C.R.; Energy and Fuels 21(6), 3746–3747, 2007.
[7] Chen, C.; Energy Reports. 7, 4022–4034, 2021.
[8] Kuniyil, M.; Arab. J. Chem. 14(3),102982, 2021.
[9] Ramadhas, A.S.; Jayaraj, S.; Muraleedharan, C.; Fuel 84, 335–340, 2005.
[10] Subramaniam, M.; Muthiya, J.; Nadanakumar, V.; Anaimuthu, S.; Sathyamurthy, R.; Energy Reports 6, 1382–1392, 2020.
[11] Li, Y.; Zhang, X.; Sun, L.; Energy Convers. Manag. 51(11), 2307–2311, 2010.
[12] Bitonto, L.; Pastore, C.; Renew. Energy 143, 1193-1200, 2019.
[13] Francisco, M.; Pereira, C.; Paula, A.; Dias, S.; Ramos, M.; Clean. Eng. Technol. 1, 1-6, 2020.
[14] Li, Y.; Zhang, X.; Sun, L.; Energy Convers. Manag. 51(11), 2307–2311, 2010.
[15] Srivastava, A.; Prasad, R.; Renew. Sustain. Energy Rev. 4(2), 111–133, 2000.
[16] Knothe, G.; Transactions of the ASAE 44(2), 193–200, 2001.
[17] Beato, P.; Rey, F.; Teresa, M.; Olsbye, U.; Catalysis Today 299(1),120-134, 2018.
[18] Ito, T.; Sakurai, Y.; Kakuta, Y., Sugano, M.; Hirano, K.; Fuel Process Technol. 94(1) ,47–52, 2012.
[19] Andreo-martínez, P.; Ortiz-martínez, V.M.; García-martínez, N.; Appl. Energy 264, 114753, 2020.
[20] Athar, M.; Zaidi, S.; Biochem. Pharmacol. 8(6), 104523, 2020.
[21] Lam, M. K.; Lee, K. T.; Mohamed, A.R.; Biotechnol. Adv. 28(4), 500–518, 2010.
[22] Lin, L.; Cunshan, Z.; Vittayapadung, S.; Xiangqian, S.; Mingdong, D.; Appl. Energy 88(4), 1020–1031, 2011.
[23] Cruz, A. E. B.; Banda, J.A.M.; Mendoza, H.; Ramos-galvan, C.E.; Melo, M.A.M.; Esquivel, D.; Catalysis Today 166, 111–115, 2011.
[24] Thangaraj, B.; Solomon, P.R.; Muniyandi, B.; Ranganathan, S.; Lin, L.; Clean Energy 3(1), 2–23, 2019.
[25] Yadav, M.; Sharma, Y.C.; J. Clean. Prod. 199, 593-602, 2018.
[26] Sahani, S.; Banerjee, S.; Sharma, Y.C.; J. Taiwan Inst. Chem. Eng. 86, 42–56, 2018.
[27] Boey, P.; Pragas, G.; Abd, S.; Chem. Eng. J. 168(1), 15–22, 2011.
[28] Helwani, Z.; Othman, M.R.; Aziz, N.; Kim, J.; Fernando, W.J.N.; Applied Catalysis A : General 363, 1–10, 2009.
[29] Hajar, M.; Vahabzadeh, F.; Korean J. Chem. Eng. 33(4), 1220-1231, 2016.
[30] Ranganathan, S.V.; Narasimhan, S.L.; Bioresource Tech. 99, 3975–3981, 2008.
[31] Chouhan, A.P.S.; Sarma, A.K.; Renew. Sustain. Energy Rev. 15(9), 4378–4399, 2011.
[32] Lozano, P.; Bernal, J.M.; Vaultier, M.; Fuel 90(11), 3461–3467, 2011.
[33] Sun, K.; Lu, J.; Ma, L.; Han, Y.; Fu, Z.; Ding, J.; Fuel. 158, 848–854, 2015.
[34] Jamil, A.K.; Muraza, O.; Al-amer, A.M.; Particuology 24, 138–141, 2016.
[35] Perego, C.; Millini, R.; Chem. Soc. Rev. 42(9), 3956-3976, 2013.
[36] Kokotailo, G.T.; Schlenker, J.L.; Dwyer, F.G.; Valyocsik, E.W.; Zeolites. 5(6), 349–351, 1985.
[37] Wen, H.; Zhou, Y.; Xie, J.; Long, Z.; Zhang, W.; Wang, J.; RSC Adv. 4(91), 49647–49654, 2014.
[38] Luo, Y.; Wang, Z.; Jin, S.; Zhang, B.; Sun, H.; Yuan, X.; Yang, W.; CrystEngComm. 18, 5611-5615, 2016.
[39] Sousa, L.V.; Silva, A.O.S.; Silva, B.J.B.; Teixeira, C.M.; Arcanjo, A.P.; Frety, R.; Pacheco, J.G.A.; Microporous Mesoporous Mater. 254, 192-200, 2017.
[40] Chen, Z.; J. Catal. 361, 177–185, 2018.
[41] Liu, S.; Ren, J.; Zhang, H.; Lv, E.; Yang, Y.; Li, Y.; J. Catal. 335, 11–23, 2016.
[42] Lu, P.; Chen, L.; Zhang, Y.; Yuan, Y.; Xu, L.; Zhang, X.; Microporous Mesoporous Mater. 236, 193–201, 2016.
[43] Simon, M. W.; Suib, S. L.; Oyoung, C. L.; J. Catal. 147(2), 484–493, 1994.
[44] Li, T.; Fuel 272, 117717, 2020.
[45] Verboekend, D.; Chabaneix, M.; Thomas, K.; Gilson, J.; Javier, P., CrystEngComm. 13, 3408–3416, 2011.
[46] Muraza, M.; Microporous Mesoporous Mater. 206, 136–143, 2015.
[47] Jamil, A.K.; Muraza, O.; Yoshioka, M.; Al-amer, A.M.; Yamani, Z.H.; Yokoi, T.; Ind. Eng. Chem. Res. 53, 19498−19505, 2014.
[48] Chen, X.; Wang, P.; Jia, L.; Li, D.; Catal. Sci. Technol. 8, 6407–6419, 2018.
[49] Wu, X.; Qiu, M.; Chen, X.; Yu, G.; Yu, X.; New J. Chem. 42, 111-117, 2018.
[50] Munusamy, K.; Das, R.K.; Ghosh, S.; Kumar, S.A.K.; Pai, S.; Newalkar, B.L.; Microporous Mesoporous Mater. 266, 141–148, 2018.
[51] Parmar, S.; Pant, K.K.; John, M.; Kumar, K.; Pai, S.M.; Newalkar, B.L.; Energy & Fuels 29, 1066-1075, 2015.
[52] Noureddini, H.; Zhu, D.; J.A.Oil Chemizts, Soc. 74(11), 1457–1463, 1997.
[53] Encinar, J.M.; Gonzalez, J.F.; Rodryguez-Reinares, A.; Ind. Eng. Chem. Res. 44(15), 5491–5499, 2005.
[54] Wang, Y.; Ou, Sh.; Liu, P.; Zhang, P. Zh.; Energy Convers. Manag. 48(1), 184-188, 2007.
_||_[1] Bessa, L.; Robustillo, M.D.; Marques Tadini, C.C.; Pessôa Filho, P.de A.; Fuel. 237, 1132–1140, 2019.
[2] Semwal, S.; Arora, A.K.; Badoni, R. P.; Tuli, D.K.; Bioresour. Technol. 102(3), 2151–2161, 2011.
[3] Kant Bhatia, Sh.; Fuel 285, 119-117, 2021.
[4] Chen, H.; Ding, M.; Li, Y.; Xu, H.; Li, Y.; Wei, Z.; J. Traffic Transp. Eng. 7(6), 791–807, 2020.
[5] Kralova, I.; Sjöblom, J.; J. Dispers. Sci. Technol. 31(3), 409–425, 2010.
[6] Meneghetti, S.M.P.; Meneghetti, M.R.; Serra, T.M.; Barbosa, D.C.; Wolf, C.R.; Energy and Fuels 21(6), 3746–3747, 2007.
[7] Chen, C.; Energy Reports. 7, 4022–4034, 2021.
[8] Kuniyil, M.; Arab. J. Chem. 14(3),102982, 2021.
[9] Ramadhas, A.S.; Jayaraj, S.; Muraleedharan, C.; Fuel 84, 335–340, 2005.
[10] Subramaniam, M.; Muthiya, J.; Nadanakumar, V.; Anaimuthu, S.; Sathyamurthy, R.; Energy Reports 6, 1382–1392, 2020.
[11] Li, Y.; Zhang, X.; Sun, L.; Energy Convers. Manag. 51(11), 2307–2311, 2010.
[12] Bitonto, L.; Pastore, C.; Renew. Energy 143, 1193-1200, 2019.
[13] Francisco, M.; Pereira, C.; Paula, A.; Dias, S.; Ramos, M.; Clean. Eng. Technol. 1, 1-6, 2020.
[14] Li, Y.; Zhang, X.; Sun, L.; Energy Convers. Manag. 51(11), 2307–2311, 2010.
[15] Srivastava, A.; Prasad, R.; Renew. Sustain. Energy Rev. 4(2), 111–133, 2000.
[16] Knothe, G.; Transactions of the ASAE 44(2), 193–200, 2001.
[17] Beato, P.; Rey, F.; Teresa, M.; Olsbye, U.; Catalysis Today 299(1),120-134, 2018.
[18] Ito, T.; Sakurai, Y.; Kakuta, Y., Sugano, M.; Hirano, K.; Fuel Process Technol. 94(1) ,47–52, 2012.
[19] Andreo-martínez, P.; Ortiz-martínez, V.M.; García-martínez, N.; Appl. Energy 264, 114753, 2020.
[20] Athar, M.; Zaidi, S.; Biochem. Pharmacol. 8(6), 104523, 2020.
[21] Lam, M. K.; Lee, K. T.; Mohamed, A.R.; Biotechnol. Adv. 28(4), 500–518, 2010.
[22] Lin, L.; Cunshan, Z.; Vittayapadung, S.; Xiangqian, S.; Mingdong, D.; Appl. Energy 88(4), 1020–1031, 2011.
[23] Cruz, A. E. B.; Banda, J.A.M.; Mendoza, H.; Ramos-galvan, C.E.; Melo, M.A.M.; Esquivel, D.; Catalysis Today 166, 111–115, 2011.
[24] Thangaraj, B.; Solomon, P.R.; Muniyandi, B.; Ranganathan, S.; Lin, L.; Clean Energy 3(1), 2–23, 2019.
[25] Yadav, M.; Sharma, Y.C.; J. Clean. Prod. 199, 593-602, 2018.
[26] Sahani, S.; Banerjee, S.; Sharma, Y.C.; J. Taiwan Inst. Chem. Eng. 86, 42–56, 2018.
[27] Boey, P.; Pragas, G.; Abd, S.; Chem. Eng. J. 168(1), 15–22, 2011.
[28] Helwani, Z.; Othman, M.R.; Aziz, N.; Kim, J.; Fernando, W.J.N.; Applied Catalysis A : General 363, 1–10, 2009.
[29] Hajar, M.; Vahabzadeh, F.; Korean J. Chem. Eng. 33(4), 1220-1231, 2016.
[30] Ranganathan, S.V.; Narasimhan, S.L.; Bioresource Tech. 99, 3975–3981, 2008.
[31] Chouhan, A.P.S.; Sarma, A.K.; Renew. Sustain. Energy Rev. 15(9), 4378–4399, 2011.
[32] Lozano, P.; Bernal, J.M.; Vaultier, M.; Fuel 90(11), 3461–3467, 2011.
[33] Sun, K.; Lu, J.; Ma, L.; Han, Y.; Fu, Z.; Ding, J.; Fuel. 158, 848–854, 2015.
[34] Jamil, A.K.; Muraza, O.; Al-amer, A.M.; Particuology 24, 138–141, 2016.
[35] Perego, C.; Millini, R.; Chem. Soc. Rev. 42(9), 3956-3976, 2013.
[36] Kokotailo, G.T.; Schlenker, J.L.; Dwyer, F.G.; Valyocsik, E.W.; Zeolites. 5(6), 349–351, 1985.
[37] Wen, H.; Zhou, Y.; Xie, J.; Long, Z.; Zhang, W.; Wang, J.; RSC Adv. 4(91), 49647–49654, 2014.
[38] Luo, Y.; Wang, Z.; Jin, S.; Zhang, B.; Sun, H.; Yuan, X.; Yang, W.; CrystEngComm. 18, 5611-5615, 2016.
[39] Sousa, L.V.; Silva, A.O.S.; Silva, B.J.B.; Teixeira, C.M.; Arcanjo, A.P.; Frety, R.; Pacheco, J.G.A.; Microporous Mesoporous Mater. 254, 192-200, 2017.
[40] Chen, Z.; J. Catal. 361, 177–185, 2018.
[41] Liu, S.; Ren, J.; Zhang, H.; Lv, E.; Yang, Y.; Li, Y.; J. Catal. 335, 11–23, 2016.
[42] Lu, P.; Chen, L.; Zhang, Y.; Yuan, Y.; Xu, L.; Zhang, X.; Microporous Mesoporous Mater. 236, 193–201, 2016.
[43] Simon, M. W.; Suib, S. L.; Oyoung, C. L.; J. Catal. 147(2), 484–493, 1994.
[44] Li, T.; Fuel 272, 117717, 2020.
[45] Verboekend, D.; Chabaneix, M.; Thomas, K.; Gilson, J.; Javier, P., CrystEngComm. 13, 3408–3416, 2011.
[46] Muraza, M.; Microporous Mesoporous Mater. 206, 136–143, 2015.
[47] Jamil, A.K.; Muraza, O.; Yoshioka, M.; Al-amer, A.M.; Yamani, Z.H.; Yokoi, T.; Ind. Eng. Chem. Res. 53, 19498−19505, 2014.
[48] Chen, X.; Wang, P.; Jia, L.; Li, D.; Catal. Sci. Technol. 8, 6407–6419, 2018.
[49] Wu, X.; Qiu, M.; Chen, X.; Yu, G.; Yu, X.; New J. Chem. 42, 111-117, 2018.
[50] Munusamy, K.; Das, R.K.; Ghosh, S.; Kumar, S.A.K.; Pai, S.; Newalkar, B.L.; Microporous Mesoporous Mater. 266, 141–148, 2018.
[51] Parmar, S.; Pant, K.K.; John, M.; Kumar, K.; Pai, S.M.; Newalkar, B.L.; Energy & Fuels 29, 1066-1075, 2015.
[52] Noureddini, H.; Zhu, D.; J.A.Oil Chemizts, Soc. 74(11), 1457–1463, 1997.
[53] Encinar, J.M.; Gonzalez, J.F.; Rodryguez-Reinares, A.; Ind. Eng. Chem. Res. 44(15), 5491–5499, 2005.
[54] Wang, Y.; Ou, Sh.; Liu, P.; Zhang, P. Zh.; Energy Convers. Manag. 48(1), 184-188, 2007.