Using of steel slag and waste rusted iron shavings for biosynthesis of nano zero-valent iron nanoparticles with magnetite coating
Subject Areas :Saber Moosazadeh 1 , shahab shariaty 2 , Mohammad Yousefi 3 , Sahar Baniyaghoob 4 , Hassan Kefayati 5
1 - Department of Chemistry, Faculty of Basic Science, Science and Research Branch, Islamic Azad University, Hesarak, Tehran, Iran
2 - استاد گروه شیمی، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران
3 - Department of Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medicine Sciences, Islamic Azad University, Tehran, Iran
4 - Department of Chemistry, Faculty of Basic Science, Science and Research Branch, Islamic Azad University, Hesarak, Tehran, Iran
5 - Department of Chemistry, Rasht Branch, Islamic Azad University, Rasht, Iran
Keywords: Camellia sinensis, Poly phenol, steel slag, Zero-valent iron nanoparticles,
Abstract :
In the present study, iron ions were prepared by chemical digestion from waste rusted iron shavings and steel slag. The zero-valent iron nanoparticles (nZVI) were synthesized by reduction of iron ions from steel scrap and steel slag with Camellia sinensis extract (tea) and coated by magnetite (Fe3O4). For this purpose, the leaf extract of Camellia sinensis was extracted using microwave waves as an environmentally friendly method and used as a reducing agent for the synthesis of nZVI. Then, the magnetite coating was placed on the zero-valent iron core to create a magnetic property. The properties and morphology of synthetic magnetic nanoparticles were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR). The specific surface area and magnetic property of the nanoparticles were determined by adsorption and desorption isotherms (BET) and vibrating sample magnetometry (VSM) as 3.59 m2 g-1 and 6.5 emu g-1, respectively. The results confirmed the formation of magnetite on the core of zero-valent iron nanoparticles and the average diameter of synthetic particles was estimated to be about 20 nm. Using waste and slag sources and using plant extract as a reducing agent lead the proposed method to be considered as a green and economical method for synthesizing the core-shell nanostructure of zero-valent iron nanoparticles with magnetite coating.
[1] Huang, G.; Xiao, Z.; Zhen, W.; Fan, Y.; Zeng, C.; Li, C.; Water Res. 175, 115684, 2020.
[2] Moslehyani, A.; Ismail, A.F.; Matsuura, T.; Rahman, M.A.; Goh, P.S.; "Membrane Separation Principles and Applications", Elsevier, USA, 85-110, 2019.
[3] Miklos, D.B.; Remy, C.; Jekel, M.; Linden, K.G.; Drewes, J.E.; Hübner, U.; Water Res. 139, 118-31, 2018.
[4] Santhosh, C.; Velmurugan, V.; Jacob, G.; Jeong, S.; Grace, A.N.; Bhatnagar, A.; Chem. Eng. J. 306, 1116-37, 2016.
[5] Dąbrowski, A.; Adv. Colloid Interface Sci. 93, 135-224, 2001.
[6] Mohammed, A.; Isra’a S.; Environ. Technol. Innov. 10, 162-74, 2018.
[7] Chu, X.; Hou, Y.; " Magnetic Nanomaterials - Fundamentals, Synthesis and Applications", John Wiley & Sons, USA, 2017.
[8] Hasany, F.; Ahmed, I.; Jose, R.; Rehman, A.; J. Nanosci. Nanotechnol. 1(1), 1-11, 2011.
[9] Majidi, S.; Zeinali, F.; Farkhani, S.; Soleymani, M.; Akbarzadeh, A.; Artife Cell Nanomed. B 44, 722-34, 2016.
[10] Ken, DS.; Sinha, A.; Environ. Nanotechnol. Monit. Manag. 14, 100344, 2020.
[11] Stefaniuk, M.; Oleszczuk, P.; Ok, Y.; Chem. Eng. J. 287, 618-32, 2016.
[12] Thomas, C.; Rosales, J.; Polanco, J.; Agrela, F.; "New Trends in Eco-efficient and Recycled Concrete", Woodhead Publishing, UK, 169-90, 2019.
[13] Asi, I.; Qasrawi, H.; Shalabi, F.; J. Civ. Eng. 34, 902-11, 2007.
[14] Machado, S.; Pinto, S,; Grosso, JP.; Nouws, H.; Albergaria, J.; Delerue-Matos, C.; Sci. Total Environ. 445-446, 1-8, 2013.
[15] Plaza, M.; Domínguez-Rodríguez, G.; Castro-Puyana, M.; Marina, M.; "Polyphenols: Properties, Recovery, and Applications", Woodhead Publishing, UK, 177-232, 2018.
[16] Raftani Amiri Z.; Maddah, P.; J. Food Res., 25(3), 419-426, 2015.
[17] Astill, C.; Birch, M.; Dacombe, C.; Humphrey, P.; Martin, P.; Journal of Agricultural and Food Chemistry 49, 5340-7, 2001.
[18] Bucić-Kojić, A.; Planinić, M.; Tomas, S.; Bilić, M.; Velić, D.; Journal of Food Engineering 81, 236-42, 2007.
[19] Babu, B.; Rastogi, N.K.; Raghavarao, K.; Chemical Engineering and Processing 47, 83-9, 2008.
[20] Khan, M.; Abert-Vian, M.; Fabiano-Tixier, A.; Dangles, O.; Chemat, F.; Food Chem.119, 851-8, 2010.
[21] Spigno, G.; Faveri, D.; Journal of Food Engineering 93, 210-7, 2009.
[22] Alonso-Salces, R.; Korta, E.; Barranco, A.; Berrueta, L.; Gallo, B.; Vicente, F.; J Chromatogr A. 933, 37-43, 2001.
[23] Fiori, L.; de Faveri, D.; Casazza, A.; Perego, P.; CyTA-J. Food 7, 163-71, 2009.
[24] Zderic, A.; Zondervan, E.; Chem. Eng. Res. Des. 109, 586-92, 2016.
[25] Rofigari Haghighat, S.; Sabori Helestani, S.; Cheraghi, K.; Shokrgozar, S.A.T.; Journal of water and soil science; 13(47), 437-442, 2009.
[26] Li, D.; Jiang, J.; Int. J. Food Sci. Nutr. 61,837-45, 2010.
[27] Veerabhadraswamy, M.; Devaraj, T.; Jayanna, B.; Anal. Chem. Lett. 8, 757-68, 2018.
[28] Gottimukkala, K.; Harika, R.; Zamare, D.; J. Nanomed Biother. Discov. 7, 151, 2017.
[29] Mystrioti, C.; Sparis, D.; Papasiopi, N.; Xenidis, A.; Dermatas, D.; Chrysochoou, M.; Bulletin of environmental Contamination and Toxicology. 94, 302-7, 2015.
[30] Liu, A.; Liu, J.; Han, J.; Zhang, W-x.; J. Hazard Mater. 322, 129-35, 2017.
[31] Loh, K.S.; Yook Heng, L.; Musa, A.; Salmah, A.; Ishak, Z.; Sensors. 8, 2008.
[32] Shahwan, T.; Abu Sirriah, S.; Nairat, M.; Boyacı, E.; Eroğlu, A.E.; Scott, T.B.; Chem. Eng. J. 172, 258-66, 2011.
[33] Chang, P.; Yu, J.; Ma, X.; Anderson, D.; Carbohydr. Polym. 83, 640-4, 2011.
[34] Huang, L.; Luo, F.; Chen, Z.; Megharaj, M.; Naidu, R.; Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 137, 154-9, 2015.
[35] Lowell, S.; Shields, J.E.; Thomas, M.A.; Thommes, M.; "Characterization of Porous Solids and Powders: Surface area, Pore size and Density", Springer Science & Business Media, Dordrecht, 2012.
[36] Sing, K.S.; Williams, R.T.; Adsorption Science & Technology 22, 773-82, 2004.
[37] Singh, R.; Misra, V.; Singh, R.P.; J. Nanopart. Res. 13.4063-73, 2011.
[38] Ma, M.; Zhang, Y.; Yu, W.; Shen, H.; Zhang, H.; Gu, N.; Cclloid Surface. A 212, 219-26, 2003.
[39] Aharoni, A.; Jakubovics J.; Philos. Mag. B 24, 1892-4, 1988.
[40] Nnadozie, E.C.; Ajibade, P.A.; Mater Lett. 263, 127145, 2020.
[41] Izadi, M.; Shahrabi, T.; Ramezanzadeh, B.; J. Ind. Eng. Chem. 57, 263-74, 2018.
_||_[1] Huang, G.; Xiao, Z.; Zhen, W.; Fan, Y.; Zeng, C.; Li, C.; Water Res. 175, 115684, 2020.
[2] Moslehyani, A.; Ismail, A.F.; Matsuura, T.; Rahman, M.A.; Goh, P.S.; "Membrane Separation Principles and Applications", Elsevier, USA, 85-110, 2019.
[3] Miklos, D.B.; Remy, C.; Jekel, M.; Linden, K.G.; Drewes, J.E.; Hübner, U.; Water Res. 139, 118-31, 2018.
[4] Santhosh, C.; Velmurugan, V.; Jacob, G.; Jeong, S.; Grace, A.N.; Bhatnagar, A.; Chem. Eng. J. 306, 1116-37, 2016.
[5] Dąbrowski, A.; Adv. Colloid Interface Sci. 93, 135-224, 2001.
[6] Mohammed, A.; Isra’a S.; Environ. Technol. Innov. 10, 162-74, 2018.
[7] Chu, X.; Hou, Y.; " Magnetic Nanomaterials - Fundamentals, Synthesis and Applications", John Wiley & Sons, USA, 2017.
[8] Hasany, F.; Ahmed, I.; Jose, R.; Rehman, A.; J. Nanosci. Nanotechnol. 1(1), 1-11, 2011.
[9] Majidi, S.; Zeinali, F.; Farkhani, S.; Soleymani, M.; Akbarzadeh, A.; Artife Cell Nanomed. B 44, 722-34, 2016.
[10] Ken, DS.; Sinha, A.; Environ. Nanotechnol. Monit. Manag. 14, 100344, 2020.
[11] Stefaniuk, M.; Oleszczuk, P.; Ok, Y.; Chem. Eng. J. 287, 618-32, 2016.
[12] Thomas, C.; Rosales, J.; Polanco, J.; Agrela, F.; "New Trends in Eco-efficient and Recycled Concrete", Woodhead Publishing, UK, 169-90, 2019.
[13] Asi, I.; Qasrawi, H.; Shalabi, F.; J. Civ. Eng. 34, 902-11, 2007.
[14] Machado, S.; Pinto, S,; Grosso, JP.; Nouws, H.; Albergaria, J.; Delerue-Matos, C.; Sci. Total Environ. 445-446, 1-8, 2013.
[15] Plaza, M.; Domínguez-Rodríguez, G.; Castro-Puyana, M.; Marina, M.; "Polyphenols: Properties, Recovery, and Applications", Woodhead Publishing, UK, 177-232, 2018.
[16] Raftani Amiri Z.; Maddah, P.; J. Food Res., 25(3), 419-426, 2015.
[17] Astill, C.; Birch, M.; Dacombe, C.; Humphrey, P.; Martin, P.; Journal of Agricultural and Food Chemistry 49, 5340-7, 2001.
[18] Bucić-Kojić, A.; Planinić, M.; Tomas, S.; Bilić, M.; Velić, D.; Journal of Food Engineering 81, 236-42, 2007.
[19] Babu, B.; Rastogi, N.K.; Raghavarao, K.; Chemical Engineering and Processing 47, 83-9, 2008.
[20] Khan, M.; Abert-Vian, M.; Fabiano-Tixier, A.; Dangles, O.; Chemat, F.; Food Chem.119, 851-8, 2010.
[21] Spigno, G.; Faveri, D.; Journal of Food Engineering 93, 210-7, 2009.
[22] Alonso-Salces, R.; Korta, E.; Barranco, A.; Berrueta, L.; Gallo, B.; Vicente, F.; J Chromatogr A. 933, 37-43, 2001.
[23] Fiori, L.; de Faveri, D.; Casazza, A.; Perego, P.; CyTA-J. Food 7, 163-71, 2009.
[24] Zderic, A.; Zondervan, E.; Chem. Eng. Res. Des. 109, 586-92, 2016.
[25] Rofigari Haghighat, S.; Sabori Helestani, S.; Cheraghi, K.; Shokrgozar, S.A.T.; Journal of water and soil science; 13(47), 437-442, 2009.
[26] Li, D.; Jiang, J.; Int. J. Food Sci. Nutr. 61,837-45, 2010.
[27] Veerabhadraswamy, M.; Devaraj, T.; Jayanna, B.; Anal. Chem. Lett. 8, 757-68, 2018.
[28] Gottimukkala, K.; Harika, R.; Zamare, D.; J. Nanomed Biother. Discov. 7, 151, 2017.
[29] Mystrioti, C.; Sparis, D.; Papasiopi, N.; Xenidis, A.; Dermatas, D.; Chrysochoou, M.; Bulletin of environmental Contamination and Toxicology. 94, 302-7, 2015.
[30] Liu, A.; Liu, J.; Han, J.; Zhang, W-x.; J. Hazard Mater. 322, 129-35, 2017.
[31] Loh, K.S.; Yook Heng, L.; Musa, A.; Salmah, A.; Ishak, Z.; Sensors. 8, 2008.
[32] Shahwan, T.; Abu Sirriah, S.; Nairat, M.; Boyacı, E.; Eroğlu, A.E.; Scott, T.B.; Chem. Eng. J. 172, 258-66, 2011.
[33] Chang, P.; Yu, J.; Ma, X.; Anderson, D.; Carbohydr. Polym. 83, 640-4, 2011.
[34] Huang, L.; Luo, F.; Chen, Z.; Megharaj, M.; Naidu, R.; Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 137, 154-9, 2015.
[35] Lowell, S.; Shields, J.E.; Thomas, M.A.; Thommes, M.; "Characterization of Porous Solids and Powders: Surface area, Pore size and Density", Springer Science & Business Media, Dordrecht, 2012.
[36] Sing, K.S.; Williams, R.T.; Adsorption Science & Technology 22, 773-82, 2004.
[37] Singh, R.; Misra, V.; Singh, R.P.; J. Nanopart. Res. 13.4063-73, 2011.
[38] Ma, M.; Zhang, Y.; Yu, W.; Shen, H.; Zhang, H.; Gu, N.; Cclloid Surface. A 212, 219-26, 2003.
[39] Aharoni, A.; Jakubovics J.; Philos. Mag. B 24, 1892-4, 1988.
[40] Nnadozie, E.C.; Ajibade, P.A.; Mater Lett. 263, 127145, 2020.
[41] Izadi, M.; Shahrabi, T.; Ramezanzadeh, B.; J. Ind. Eng. Chem. 57, 263-74, 2018.