Investigating the effect of zeolite catalyst in the co-pyrolysis of low density polyethylene and poplar wood
Subject Areas :Sepideh Behnam 1 , Mortaza Gholizadeh 2 *
1 - Faculty of Chemical and Petroleum Engineering, University of Tabriz
2 - Faculty of Chemical and Petroleum Engineering, University of Tabriz
Keywords: zeolite, pyrolysis, Poplar wood, low density polyethylene,
Abstract :
In this study, the effect of zeolite on the process of mixing poplar wood and low density polyethylene (LDPE) was investigated. For this purpose, in a laboratory-sized reactor, 15 g of this mixture was loaded and pyrolysis of the mixture was performed at 500 °C, atmospheric pressure, and in the atmosphere of nitrogen gas. Addition of A4 zeolite catalyst to the pyrolysis of poplar wood and LDPE increased the amount of tar. The produced tar had two groups of aliphatic and aromatic compounds. The catalyst also increased the amount of aromatic substances in the tar and improved the quality of the tar by deoxygenation. According to the results of SEM analysis, it was found that the structure of the solutions produced by thermal and catalytic pyrolysis was similar to the structure of poplar wood. However, the catalytic products had more porosity. The results of FTIR analysis showed that the addition of catalyst caused a slight deoxygenation of wax surface obtained from catalytic pyrolysis and also reduced the amount of wax produced. These results showed that A4 zeolite catalyst tended to deoxygenate the surface of the products. According to the XRD patterns and elemental analysis of the catalyst, it was determined that a very small amount of coke was formed on the catalyst after the reaction.
[1] Achilias, D.S.; Roupakias, C.; Megalokonomos, P.; Lappas, A.A.; Antonakou, E.V.; J. Hazard. Mater. 149, 536–542, 2007.
[2] Abnisa, F.; Daud, W.; Energy Convers. Manag. 87, 71–85, 2014.
[3] Park, Y.K.; Jung, J.; Ryu, S.; Lee, H.W.; Siddiqui, M.Z.; Jae, J.; Watanabe, A.; Kim, Y.M.; Appl. Energy, 250,1706–1718, 2019.
[4] Önal, E.; Uzun, B.B.; Pütün, A.E.; Energy Convers. Manag. 78, 704–710, 2014.
[5] Oyedun, A.O.; Gebreegziabher, T.; Denny, K.S. Ng; Hui, C.W.; Energy 1, 1–9, 2014.
[6] Ryua, H.W.; Tsang, Y.F.; Lee, H.W.; Jae, J.; Jung, S.C.; Lam, S.S.; Park, E.D.; Park, Y.K.; Chem. Eng. Sci. 373, 375–381, 2019.
[7] Ephraim, A.; Minh, D.P.; Lebonnois, D.; Peregrina, C.; Sharrock, P.; Nzihou, A.; Fuel 231, 110–117, 2018.
[8] Lin, X.; Kong, L.; Zhang, D.; Cai, H.; Lei, H.; Renew. Energy 164, 87–95, 2021.
[9] Paradela, F.; Pinto, F.; Gulyurtlu, I.; Cabrita, I.; Lapa, N.; Clean Technol. Environ. Policy 11, 115–122, 2009.
[10] Li, C.; Zhang, C.; Gholizadeh, M.; Hu, X.; J. Hazard. Mater. 339, 1-15, 2020.
[11] Hassan, H.; Lim, J.K.; Hameed, B.H.; Bioresour. Technol. 221, 645–655, 2016.
[12] Xue, Y.; Kelkar, A.; Bai, X.; Fuel 166, 227–236, 2016.
[13] López, A.; de Marcoa, I.; Caballero, B.M.; Laresgoiti, M.F.; Adrados, A.; Aranzabal, A.; Appl. Catal. B: Environ. 104, 211–219, 2011.
[14] Imran, A.; Bramer, E.A.; Seshan, K.; Brem, G.; Biofuel Res. J. 20, 872-885, 2018.
[15] Fan, L.; Chen, P.; Zhang, Y.; Liu, S.; Liu, Y.; Wang, Y.; Dai, L.; Ruan, R.; Bioresour. Technol. 225, 199–205, 2017.
[16] Prabir, B.; “Biomass Gasification and Pyrolysis”, Elsevier, the Boulevard, Langford Lane, Kidlington, Oxford, 2010.
[17] Gašparovič, L.; Koreňová, Z.; Jelemenský, Ľ.; Chemical Papers 64, 174-181, 2010.
[18] Alcock, C.B.; “Thermochemical Processes.”, 1th Edition, University of Norte Dame, USA, 2000.
[19] Scott, D.S.; Piskorz, J.; Radlein, D.; Ind. Eng. Chem. Process Des. Dev. 24, 581-588, 1985.
[20] Fagbemi, L.; Khezami, L.; Capart, R.; Appl. Energy 69, 293-306, 2001.
[21] Onay, O.; Kockar, OM.; Renew. Energy 28, 2417-2433, 2003.
[22] Zheng, Y.; Tao, L.; Yang, X.; Huang, Y.; Liu, C.; Zheng, Z.; J. Anal. Appl. Pyrolysis, 133, 185-197, 2018.
[23] Chi, Y.; Xue, J.; Zhuo, J.; Zhang, D.; Liu, M.; Yao, K.; Sci. Total Environ. 633, 1105–1113, 2018.
[24] Janković, B.; Manić, N.; Dodevski, V.; Popović, J.; Rusmirović, J.D.; Tošić, M.; Fuel 238, 111–128, 2019.
[25] Lam, S.; Russell, A.D.; Lee, C.; Chase, H.A.; Fuel 92, 327–339, 2012.
[26] Schnitzer, M.I.; Monreal, C.M.; Facey, G.; Fransham, P.B.; J. Environ. Sci. Health B 42, 71-77, 2007.
[27] Sophonrat, N.; Yang, W.; Energy Procedia 142, 315–320, 2017.
[28] Hamouya, M.; Mahir, A.; EL Idrissi, M.C.; Int. J. Eng. Res. Technol. 3, 210-215, 2014.
[29] Bahoria, B.V.; Parbat, D.K.; Nagarnaik, P.B.; Mater. Today: Proc. 5, 1432–1438, 2018.
[30] Dong, Y.; Yan, Y.; Wang, K.; Li, J.; Zhang, S.; Xia, C,; Shi, S.Q.; Cai, L.; Eur. J. Wood Wood Prod. 74, 177–184, 2016.
[31] Kloss, S.; Zehetner, F.; Dellantonio, A.; Hamid, R.; Ottner, F.; Liedtke, V.; Schwanninger, M.; Gerzabek, M.H.; Soja, G.; J. Environ. Qual. 41, 990-1000, 2012.
[32] Chen, H.; Bahmani, M.; Humar, M.; Cheng, D.; Forests 11, 1-14, 2020.
[33] Amini, E.; Safdari, M.S.; DeYoung, J.T.; Weise, D.R.; Fletcher, T.H.; Fuel 235, 1475-1491, 2019.
[34] Sogancioglu, M.; Yel, E.; Ahmetli, G.; J. Clean. Prod. 165, 369-381, 2017.
[35] Williams, P.T.; Williams, E.A.; J. Anal. Appl. Pyrolysis 51, 107–126, 1991.
[36] Fraijo, P.H.; Smolentseva, E.; Simakov, A.; José-Yacaman, M.; Acosta, B.; Micropor. Mesopor. Mat. 312, 1-50, 2020.
[37] Klaimy, S.; Ciotonea, C.; Dhainaut, J.; Royer, S.; Casetta, M.; Duquesne, S.; Tricot, G.; Lamonier, J.F.; ChemCatChem 12, 1109-1116, 2020.
[38] Wang, P.; Sun, Q.; Zhang, Y.; Cao, J.; Materials 12, 1-12, 2019.
[39] Yang, L.; Qian, X.; Yuan, P.; Bai, H.; Miki, T.; Men, F.; Li, H.; Nagasaka, T.; J. Clean. Prod. 212, 250-260, 2019.
_||_[1] Achilias, D.S.; Roupakias, C.; Megalokonomos, P.; Lappas, A.A.; Antonakou, E.V.; J. Hazard. Mater. 149, 536–542, 2007.
[2] Abnisa, F.; Daud, W.; Energy Convers. Manag. 87, 71–85, 2014.
[3] Park, Y.K.; Jung, J.; Ryu, S.; Lee, H.W.; Siddiqui, M.Z.; Jae, J.; Watanabe, A.; Kim, Y.M.; Appl. Energy, 250,1706–1718, 2019.
[4] Önal, E.; Uzun, B.B.; Pütün, A.E.; Energy Convers. Manag. 78, 704–710, 2014.
[5] Oyedun, A.O.; Gebreegziabher, T.; Denny, K.S. Ng; Hui, C.W.; Energy 1, 1–9, 2014.
[6] Ryua, H.W.; Tsang, Y.F.; Lee, H.W.; Jae, J.; Jung, S.C.; Lam, S.S.; Park, E.D.; Park, Y.K.; Chem. Eng. Sci. 373, 375–381, 2019.
[7] Ephraim, A.; Minh, D.P.; Lebonnois, D.; Peregrina, C.; Sharrock, P.; Nzihou, A.; Fuel 231, 110–117, 2018.
[8] Lin, X.; Kong, L.; Zhang, D.; Cai, H.; Lei, H.; Renew. Energy 164, 87–95, 2021.
[9] Paradela, F.; Pinto, F.; Gulyurtlu, I.; Cabrita, I.; Lapa, N.; Clean Technol. Environ. Policy 11, 115–122, 2009.
[10] Li, C.; Zhang, C.; Gholizadeh, M.; Hu, X.; J. Hazard. Mater. 339, 1-15, 2020.
[11] Hassan, H.; Lim, J.K.; Hameed, B.H.; Bioresour. Technol. 221, 645–655, 2016.
[12] Xue, Y.; Kelkar, A.; Bai, X.; Fuel 166, 227–236, 2016.
[13] López, A.; de Marcoa, I.; Caballero, B.M.; Laresgoiti, M.F.; Adrados, A.; Aranzabal, A.; Appl. Catal. B: Environ. 104, 211–219, 2011.
[14] Imran, A.; Bramer, E.A.; Seshan, K.; Brem, G.; Biofuel Res. J. 20, 872-885, 2018.
[15] Fan, L.; Chen, P.; Zhang, Y.; Liu, S.; Liu, Y.; Wang, Y.; Dai, L.; Ruan, R.; Bioresour. Technol. 225, 199–205, 2017.
[16] Prabir, B.; “Biomass Gasification and Pyrolysis”, Elsevier, the Boulevard, Langford Lane, Kidlington, Oxford, 2010.
[17] Gašparovič, L.; Koreňová, Z.; Jelemenský, Ľ.; Chemical Papers 64, 174-181, 2010.
[18] Alcock, C.B.; “Thermochemical Processes.”, 1th Edition, University of Norte Dame, USA, 2000.
[19] Scott, D.S.; Piskorz, J.; Radlein, D.; Ind. Eng. Chem. Process Des. Dev. 24, 581-588, 1985.
[20] Fagbemi, L.; Khezami, L.; Capart, R.; Appl. Energy 69, 293-306, 2001.
[21] Onay, O.; Kockar, OM.; Renew. Energy 28, 2417-2433, 2003.
[22] Zheng, Y.; Tao, L.; Yang, X.; Huang, Y.; Liu, C.; Zheng, Z.; J. Anal. Appl. Pyrolysis, 133, 185-197, 2018.
[23] Chi, Y.; Xue, J.; Zhuo, J.; Zhang, D.; Liu, M.; Yao, K.; Sci. Total Environ. 633, 1105–1113, 2018.
[24] Janković, B.; Manić, N.; Dodevski, V.; Popović, J.; Rusmirović, J.D.; Tošić, M.; Fuel 238, 111–128, 2019.
[25] Lam, S.; Russell, A.D.; Lee, C.; Chase, H.A.; Fuel 92, 327–339, 2012.
[26] Schnitzer, M.I.; Monreal, C.M.; Facey, G.; Fransham, P.B.; J. Environ. Sci. Health B 42, 71-77, 2007.
[27] Sophonrat, N.; Yang, W.; Energy Procedia 142, 315–320, 2017.
[28] Hamouya, M.; Mahir, A.; EL Idrissi, M.C.; Int. J. Eng. Res. Technol. 3, 210-215, 2014.
[29] Bahoria, B.V.; Parbat, D.K.; Nagarnaik, P.B.; Mater. Today: Proc. 5, 1432–1438, 2018.
[30] Dong, Y.; Yan, Y.; Wang, K.; Li, J.; Zhang, S.; Xia, C,; Shi, S.Q.; Cai, L.; Eur. J. Wood Wood Prod. 74, 177–184, 2016.
[31] Kloss, S.; Zehetner, F.; Dellantonio, A.; Hamid, R.; Ottner, F.; Liedtke, V.; Schwanninger, M.; Gerzabek, M.H.; Soja, G.; J. Environ. Qual. 41, 990-1000, 2012.
[32] Chen, H.; Bahmani, M.; Humar, M.; Cheng, D.; Forests 11, 1-14, 2020.
[33] Amini, E.; Safdari, M.S.; DeYoung, J.T.; Weise, D.R.; Fletcher, T.H.; Fuel 235, 1475-1491, 2019.
[34] Sogancioglu, M.; Yel, E.; Ahmetli, G.; J. Clean. Prod. 165, 369-381, 2017.
[35] Williams, P.T.; Williams, E.A.; J. Anal. Appl. Pyrolysis 51, 107–126, 1991.
[36] Fraijo, P.H.; Smolentseva, E.; Simakov, A.; José-Yacaman, M.; Acosta, B.; Micropor. Mesopor. Mat. 312, 1-50, 2020.
[37] Klaimy, S.; Ciotonea, C.; Dhainaut, J.; Royer, S.; Casetta, M.; Duquesne, S.; Tricot, G.; Lamonier, J.F.; ChemCatChem 12, 1109-1116, 2020.
[38] Wang, P.; Sun, Q.; Zhang, Y.; Cao, J.; Materials 12, 1-12, 2019.
[39] Yang, L.; Qian, X.; Yuan, P.; Bai, H.; Miki, T.; Men, F.; Li, H.; Nagasaka, T.; J. Clean. Prod. 212, 250-260, 2019.