The effect of solvent type and concentration on extraction of phenolic compounds and evaluation of antioxidant activity of Crataegus elbursensis L. leaf collected from Golestan province
Subject Areas : GeneticMohammad Moghaddam 1 * , Leila Mehdizade 2
1 - Department of Horticulture Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
2 - Department of Horticulture Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
Keywords: Extract, Solvent, Antioxidant capacity, phenolic compounds, Crataegus elbursensis,
Abstract :
In order to investigate the effect of the type and concentration of solvent on the amount of extraction of phenolic compounds and antioxidant activity of Crataegus elbursensis leaves, a research was performed in two separate experiments. At first experiment the effect of solvent type (acetone, ethanol, methanol) at three concentrations (50, 80 and 100%) on extracted total phenolics content of C. elbursensis leaf was evaluated. At second experiment antioxidant capacity of produced extract from the best solvent at first experiment with the highest phenolic compounds (methanol 80%) was investigated by two different methods including total antioxidant and Fe reduction capacity. The results of these experiments showed that all three solvents; acetone, ethanol and methanol; in the form of mixture with water have more potential for extracting phenolic compounds toward the pure ones. The highest total phenolic content (118 mg GAE/g DW) was obtained at 80% concentration of all solvents, especially at methanol 80%. The results of evaluating antioxidant activity showed that with increasing the concentration of extract up to 500 µg/mL, antioxidant activity (0.8 mg/mL) was increased. Investigation of Fe reduction capacity indicated that with increasing the concentration of extract up to 800 µg/mL, the amount of absorption of the solvents contain the extract significantly increased. Therefore, according to the results of this study, the leaves of this plant can be used as the source of phenolics and antioxidants in different industries.
Arabshahi-Delouee, S. and Urooj, A. (2007). Antioxidant properties of various solvent extracts of mulberry (Morus indica L.) leaves. Food Chemistry, 102:1233–1240.
Bernatonienė, J., Masteikova, R., Majienė, D., Savickas, A., Kėvelaitis, E., Bernatonienė, R., Dvorácková, K., Civinskiene, G., Lekas, R., Vitkevicius, K. and Pečiūra, R. (2008). Free radical-scavenging activities of Crataegus monogyna extracts. Medicina, 44(9): 706-716.
Froehlicher, T., Hennebelle, T., Martin-Nizard, F., Cleenewerck, P., Hilbert, J.L., Trotin, F. and Grec, S. (2009). Phenolic profiles and antioxidative effects of hawthorn cell suspensions, fresh fruits, and medicinal dried parts. Food Chemistry, 115(3): 897-903.
Ghahreman, A. 2007. Flora of Iran. Research institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran.
Hayouni, EA., Abedrabba, M., Bouix, M. and Hamdi, M. (2007). The effects of solvents and extraction method on the phenolic contents and biological activities in vitro of Tunisian Quercus coccifera L. and Juniperus phoenicea L. fruit extracts. Food Chemistry, 105(3): 1126-1134.
Huda-Faujan, N., Noriham, A., Norrakiah, AS. and Babji, AS. (2009). Antioxidant activity of plants methanolic extracts containing phenolic compounds.” African Journal of Biotechnology, 8: 484-489.
Jung, CH., Seog, H.M., Choi, IW., Park, MW. and Cho, HY. (2006). Antioxidant properties of various solvent extracts from wild ginseng leaves. LWT-Food Science and Technology, 39: 266-274.
Kumaran, A. and Karunakaran, RJ. (2007). In vitro antioxidant activities of methanol extracts of five Phyllanthus species from India. LWT-Food Science and Technology, 40(2): 344-352.
Mohsen, SM. and Ammar, AS. (2009). Total phenolic contents and antioxidant activity of corn tassel extracts. Food Chemistry, 112(3): 595-598.
Nabavi, SM., Ebrahimzadeh, MA., Nabavi, SF., Hamidinia, A. and Bekhradnia, AR. (2008). Determination of antioxidant activity, phenol and flavonoids content of Parrotia persica Mey. Pharmacologyonline, 2: 560-567.
Pham, HNT., Nguyen, VT., Vuong, QV. , Bowyer, MC. and Scarlett, CJ. (2015). Effect of extraction solvents and drying methods on the physicochemical and antioxidant properties of Helicteres hirsuta Lour. leaves. Technologies, 3(4): 285-301.
Prieto, P., Pineda, M. and Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Analytical Biochemistry, 269: 337-341.
Rabiei, K., Bekhradnia, S., Nabavi, SM., Nabavi, SF. and Ebrahimzadeh, MA. (2012). Antioxidant activity of polyphenol and ultrasonic extracts from fruits of Crataegus pentagyna subsp. elburensis. Natural Product Research, 26(24): 2353-2357.
Rumbaoa, RGO., Cornago, DF. and Geronimo, IM. (2009). Phenolic content and antioxidant capacity of Philippine potato (Solanum tuberosum) tubers. Journal of Food Composition and Analysis, 22: 546-550.
Salmanian, S., Sadeghi Mahoonak, AR., Alami, M. and Ghorbani, M. (2014). Phenolic content, antiradical, antioxidant, and antibacterial properties of hawthorn (Crataegus elbursensis) seed and pulp extract. Journal of Agricultural Science and Technology, 16: 343-354.
Shahidi, F. and Ambigaipalan, P. (2015). Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects–A review. Journal of Functional Foods, 18: 820-897.
Shahidi, F. and Zhong, Y. (2015). Measurement of antioxidant activity”. Journal of Functional Foods, 18: 757-781.
Shortle, E., O'Grady, MN., Gilroy, D., Furey, A., Quinn, N. and Kerry, JP. (2014). Influence of extraction technique on the anti-oxidative potential of hawthorn (Crataegus monogyna) extracts in bovine muscle homogenates. Meat Science, 98(4): 828-834.
Singh, S. and Singh, RP. (2008). In Vitro Methods of Assay of Antioxidants: An Overview.” Food Reviews International, 24: 392-415.
Slinkard, K. and Singleton, VL. (1977). Total phenol analysis; automation and comparison with manual methods. American Journal of Enology and Viticulture, 28: 49-55.
Soares, AA., Souza, CGM., Daniel, FM., Ferrari, GP. , Costa, SMG. and Peralta, RM. (2009). Antioxidant activity and total phenolic content of Agaricus brasiliensis (Agaricus blazei Murril) in two stages of maturity. Food Chemistry, 112: 775-781.
Spigno, G., Tramelli, L. and De Faveri, DM. (2007). Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. Journal of Food Engineering, 81(1): 200-208.
Suzuki, M., Watanabe, T., Miura, A., Harashima, E., Nakagawa, Y. and Tsuji, K. (2002). An extraction solvent optimum for analyzing polyphenol contents by Folin-Denis assay. Nippon Shokuhin Kagaku Kaishi, 49: 507-511.
Tajik, S., Zarin Kamar, F. and Niknam, V. (2018). Evaluation of antioxidant activity and total phenolic content of Crocus sativus L. organs. The Modares Semiannual Biological Sciences, 8(3): 127-138.
Trabelsi, N., Megdiche, W. , Ksouri, R. , Falleh, H. , Oueslati, S. , Soumaya, B. , Hajlaoui, H. and Abdelly, C. (2010). Solvent effects on phenolic contents and biological activities of the halophyte Limoniastrum monopetalum leaves. LWT-Food Science and Technology, 43(4): 632-639.
Turkmen, N., Sari, F. and Velioglu, YS. (2006). Effects of extraction solvents on concentration and antioxidant activity of black and black mate tea polyphenols determined by ferrous tartrate and Folin–Ciocalteu methods. Food Chemistry, 99(4): 835-841.
Yildirim, A., Mavi, A. and Kara, AA. (2001). Determination of antioxidant and antimicrobial activities of Rumex crispus L. extracts. Journal of Agricultural and Food Chemistry, 49: 4083-4089.
Yu, J., Wang, L. , Walzem, RL., Miller, EG., Pike, LM. and Patil, BS. (2005). Antioxidant activity of citrus limonoids, flavonoids, and coumarins. Journal of Agricultural and Food Chemistry, 53(6): 2009-2014.
Zargari, A. (1997). A Medicinal Plants (Volume 4th). Tehran university publications, Tehran.
_||_
Arabshahi-Delouee, S. and Urooj, A. (2007). Antioxidant properties of various solvent extracts of mulberry (Morus indica L.) leaves. Food Chemistry, 102:1233–1240.
Bernatonienė, J., Masteikova, R., Majienė, D., Savickas, A., Kėvelaitis, E., Bernatonienė, R., Dvorácková, K., Civinskiene, G., Lekas, R., Vitkevicius, K. and Pečiūra, R. (2008). Free radical-scavenging activities of Crataegus monogyna extracts. Medicina, 44(9): 706-716.
Froehlicher, T., Hennebelle, T., Martin-Nizard, F., Cleenewerck, P., Hilbert, J.L., Trotin, F. and Grec, S. (2009). Phenolic profiles and antioxidative effects of hawthorn cell suspensions, fresh fruits, and medicinal dried parts. Food Chemistry, 115(3): 897-903.
Ghahreman, A. 2007. Flora of Iran. Research institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran.
Hayouni, EA., Abedrabba, M., Bouix, M. and Hamdi, M. (2007). The effects of solvents and extraction method on the phenolic contents and biological activities in vitro of Tunisian Quercus coccifera L. and Juniperus phoenicea L. fruit extracts. Food Chemistry, 105(3): 1126-1134.
Huda-Faujan, N., Noriham, A., Norrakiah, AS. and Babji, AS. (2009). Antioxidant activity of plants methanolic extracts containing phenolic compounds.” African Journal of Biotechnology, 8: 484-489.
Jung, CH., Seog, H.M., Choi, IW., Park, MW. and Cho, HY. (2006). Antioxidant properties of various solvent extracts from wild ginseng leaves. LWT-Food Science and Technology, 39: 266-274.
Kumaran, A. and Karunakaran, RJ. (2007). In vitro antioxidant activities of methanol extracts of five Phyllanthus species from India. LWT-Food Science and Technology, 40(2): 344-352.
Mohsen, SM. and Ammar, AS. (2009). Total phenolic contents and antioxidant activity of corn tassel extracts. Food Chemistry, 112(3): 595-598.
Nabavi, SM., Ebrahimzadeh, MA., Nabavi, SF., Hamidinia, A. and Bekhradnia, AR. (2008). Determination of antioxidant activity, phenol and flavonoids content of Parrotia persica Mey. Pharmacologyonline, 2: 560-567.
Pham, HNT., Nguyen, VT., Vuong, QV. , Bowyer, MC. and Scarlett, CJ. (2015). Effect of extraction solvents and drying methods on the physicochemical and antioxidant properties of Helicteres hirsuta Lour. leaves. Technologies, 3(4): 285-301.
Prieto, P., Pineda, M. and Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Analytical Biochemistry, 269: 337-341.
Rabiei, K., Bekhradnia, S., Nabavi, SM., Nabavi, SF. and Ebrahimzadeh, MA. (2012). Antioxidant activity of polyphenol and ultrasonic extracts from fruits of Crataegus pentagyna subsp. elburensis. Natural Product Research, 26(24): 2353-2357.
Rumbaoa, RGO., Cornago, DF. and Geronimo, IM. (2009). Phenolic content and antioxidant capacity of Philippine potato (Solanum tuberosum) tubers. Journal of Food Composition and Analysis, 22: 546-550.
Salmanian, S., Sadeghi Mahoonak, AR., Alami, M. and Ghorbani, M. (2014). Phenolic content, antiradical, antioxidant, and antibacterial properties of hawthorn (Crataegus elbursensis) seed and pulp extract. Journal of Agricultural Science and Technology, 16: 343-354.
Shahidi, F. and Ambigaipalan, P. (2015). Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects–A review. Journal of Functional Foods, 18: 820-897.
Shahidi, F. and Zhong, Y. (2015). Measurement of antioxidant activity”. Journal of Functional Foods, 18: 757-781.
Shortle, E., O'Grady, MN., Gilroy, D., Furey, A., Quinn, N. and Kerry, JP. (2014). Influence of extraction technique on the anti-oxidative potential of hawthorn (Crataegus monogyna) extracts in bovine muscle homogenates. Meat Science, 98(4): 828-834.
Singh, S. and Singh, RP. (2008). In Vitro Methods of Assay of Antioxidants: An Overview.” Food Reviews International, 24: 392-415.
Slinkard, K. and Singleton, VL. (1977). Total phenol analysis; automation and comparison with manual methods. American Journal of Enology and Viticulture, 28: 49-55.
Soares, AA., Souza, CGM., Daniel, FM., Ferrari, GP. , Costa, SMG. and Peralta, RM. (2009). Antioxidant activity and total phenolic content of Agaricus brasiliensis (Agaricus blazei Murril) in two stages of maturity. Food Chemistry, 112: 775-781.
Spigno, G., Tramelli, L. and De Faveri, DM. (2007). Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. Journal of Food Engineering, 81(1): 200-208.
Suzuki, M., Watanabe, T., Miura, A., Harashima, E., Nakagawa, Y. and Tsuji, K. (2002). An extraction solvent optimum for analyzing polyphenol contents by Folin-Denis assay. Nippon Shokuhin Kagaku Kaishi, 49: 507-511.
Tajik, S., Zarin Kamar, F. and Niknam, V. (2018). Evaluation of antioxidant activity and total phenolic content of Crocus sativus L. organs. The Modares Semiannual Biological Sciences, 8(3): 127-138.
Trabelsi, N., Megdiche, W. , Ksouri, R. , Falleh, H. , Oueslati, S. , Soumaya, B. , Hajlaoui, H. and Abdelly, C. (2010). Solvent effects on phenolic contents and biological activities of the halophyte Limoniastrum monopetalum leaves. LWT-Food Science and Technology, 43(4): 632-639.
Turkmen, N., Sari, F. and Velioglu, YS. (2006). Effects of extraction solvents on concentration and antioxidant activity of black and black mate tea polyphenols determined by ferrous tartrate and Folin–Ciocalteu methods. Food Chemistry, 99(4): 835-841.
Yildirim, A., Mavi, A. and Kara, AA. (2001). Determination of antioxidant and antimicrobial activities of Rumex crispus L. extracts. Journal of Agricultural and Food Chemistry, 49: 4083-4089.
Yu, J., Wang, L. , Walzem, RL., Miller, EG., Pike, LM. and Patil, BS. (2005). Antioxidant activity of citrus limonoids, flavonoids, and coumarins. Journal of Agricultural and Food Chemistry, 53(6): 2009-2014.
Zargari, A. (1997). A Medicinal Plants (Volume 4th). Tehran university publications, Tehran.