The antibacterial effect of Chlorella vulgaris microalgae on Esherichia coli from wastewater treatment plants in Gilan province
Subject Areas : microalgaeخیزران ابراهیمی 1 , Masoomeh Jamalomidi 2 * , حمید سبحانیان 3 , ندا سلطانی 4 , Gholam Reza Bakhshi Khaniki 5
1 - Department of Biology, Payame Noor University, Tehran, Iran
2 - Biology, faculty of Science, Payame Noor university. Rasht,Iran
3 - Department of Biology, Payam Noor University, Tehran, Iran
4 - گروه پژوهشی میکروبیولوژی نفت، پژوهشکده علوم پایه کاربردی جهاددانشگاهی
5 - Professor, Payameh Nour University, Tehran,Biology Group
Keywords: Chlorella vulgaris microalgae, bacteria Escherichia coli , sewage, Wastewater,
Abstract :
In aquatic ecosystems, as the richest collection of living organisms, microalgae are amy, which play an essential role in the process of water and wastewater quality. One of the most famous microalgae is Chlorella vulgaris microalgae. Chlorella vulgaris microalgae (Chlorella vulgaris) has been widely used for wastewater treatment. According to this microalgae, it has a high ability to remove chemical pollutants, reducing the noticeable ability and removing bacteriological pollution. In this research, the antibacterial effect of Chlorella vulgaris microalgae (Chlorella vulgaris) in different seasons on Esherichia coli bacteria was investigated. Zinder special culture medium was used for the cultivation of Chlorella vulgaris microalgae. After the preparation and cultivation of Chlorella vulgaris microalgae, the antibacterial effects of this algae and the minimum concentration of inhibiting the growth of microbes were determined using the tube dilution method against bacteria (Esherichia coli). The results showed that Chlorella vulgaris microalgae (Chlorella vulgaris) has significant inhibitory properties against bacteria (Esherichia coli). Also, there was a significantcorrelation between the time of the microalgae Chlorella vulgaris (Chlorella vulgaris) and the number of removal bacteria (Esherichia coli). Chlorella vulgaris (Chlorella vulgaris) microalgae in the autumn and winter seasons at a concentration of 10 mg/l for 30 to 40 minutes and in the hot seasons of the year at a concentration of 8-10 mg/l led to a reduction of about 50% of Escherichia coli. ) bacteria with MPN equal to 54 mg/l
1.Abreu A. p,. Fernandes B., Vicents A., Teixeira j., G., (2012) ,Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source, Bioresource Technology, (118)61-66.
2.Ansa, E.D.O., Awuah, E., Andoh, A., Banu, R., Dorgbetor, W.H.K., Lubberding, H.J., Gijzen, H.J., 2015. A review of the mechanisms of faecal coliform removal from algal and duckweed waste stabilization pond systems. Am. J. Environ. Sci. 11, 28–34.
3.APHA, 2023. Standard Methods for the Examination of Water and Wastewater, twenty-first ed. American Public Health Association, NewYork.
4.Akpor O, Otohinoyi D, Olaolu D, et al. Pollutants in wastewater effluents: impacts and remediation processes. International Journal of Environmental Research and Earth Science. 2014;3(3):050-9.
5.Cornu, M., Delignett,P.,Muller, ML and Flandrois, J.P.,1999.Charecterization of unexpected growth of Escherichia coli0157:H7 by modeling, Applied and Environmental Microbiology, Vol.65(12):5322-5327.
6.Davies-Colley, R.J., A.M. Donnison and D.J. Speed, 2000. Towards a mechanistic understanding of ponddisinfection. Water Sci. Technol., 42: 149-158.
7.Fataei E, Torabian A, Hosseinzadeh Kalkhoran M, et al. Selection of Optimum Municipal Wastewater TreatmentProcess Using AHP (Case Study: Ardebil, Tabriz, and Uremia). Health journal. 2014; 4(3): 260-272.
8.Gutzeit, G., D. Lorch, A. Weber, M. Engels and U. Neis, 2005. Bioflocculent algal-bacterial biomass improves low-cost wastewater treatment. Water Sci. Technol., 52: 9-18. PMID: 16477966.
9.Henderson, R., S.A. Parsons and B. Jefferson, 2008. The impact of algal properties and pre-oxidation on solid-liquid separation of algae. Water Res., 42: 1827-1845. DOI: 10.1016/j.watres.2007.11.039.
10.Liu, H., Zhou, Y., Xiao, W., Ji, L., Cao, X., Song, C., 2012. Shifting nutrient-mediated interactions between algae and bacteria in a microcosm: evidence from alkaline phosphatase assay. Microbiol. Res. 167, 292–298 https://doi.org/10.1016/j.micres. 2011.10.005.
11.Mayo, A.W., Noike, T., 1996. Effects of temperature and pH on the growth of heterotrophic bacteria in waste stabilization ponds. Water Res. 30, 447–455 https:// doi.org/10.1016/0043-1354(95)00150-6.
12.Mayo, A.W., 1997. Effects of temperature and pH on the kinetic growth of unialga Chlorella vulgaris cultures containing bacteria. Water Environ. Res. 69, 64–72.
13.Maiga, Y., K. Denyiba, J. Wethe and A.S. Quattara, 2009. Sunlight inactivation of Escherichia coli in waste stabilization microcosms in a sahelian region (Quagadougou, Burkina Faso). J. Photochem. Photobiol., 94: 113-119. DOI: 10.1016/j.photobiol.2008.10.008.
14.Maynard, H.E., S.K. Ouki and S.C. Williams, 1999. Tertiary lagoons: A review of removal mechanisms and performance. Water Res., 33: 1-13. DOI: 10.1016/50043-1354(98)00198-5.
15.Pearson, H.W., S.T. Silva-Athayde, G.B. Athayde Jnr and S.A. Silva, 2005. Implications for physical design: The effect of depth on the performance of waste stabilization ponds. Water Sci. Technol., 51: 69-74. PMID: 16114665.
16.Ramanan, R., Kim, B.-H., Cho, D.-H., Oh, H.-M., Kim, H.-S., 2016. Algae–bacteria interactions: evolution, ecology and emerging applications. Biotechnol. Adv. 34, 14–29.
17.Rohde, J., Kessler, M., Amtsberg, C. and Amtsberg, G., 2004.Comparison of methods for antimicrobial suscebtibility testing and MIC values for pleuromitilin drugs for brachyspira hodysenteriae isolated in Germany, Veterinary Microbiology,Vol. 102 (1-2): 25-32.
18.Sakarika, M., Kornaros, M., 2016. Effect of pH on growth and lipid accumulation kinetics of the microalga Chlorella vulgaris grown heterotrophically under sulfur limitation. Bioresour. Technol. 219, 694–701.
19.Sayadi, M. H., Ghatnekar, S. D., Kavian, M.F. (2011) Algae a promising alternative for biofuel. Proceedings of the international academy of ecology and environmental sciences, 1(2), 112-124.
20.Tallon, P., B. Magajna, C. Lofranco and K.T. Leung, 2005. Microbial indicators of faecal contamination in water: A current perspective. Water, Air Soil Pollut., 166: 139-166. DOI: 10.1007/s11270-005-7905-4.
21.Taskin, E., Ozturk, E and Kurt, O., 2007. Antibacterial activities of some Marine algae from the Aegean Sea(Turkey), African Journal of Biotechnology, Vol. 6 (24): 2746-2751.
22.Van der Steen, P., A. Brenner Y. Shabtai and G. Oron, 2000a. The effect of environmental conditions on faecal coliform decay in post-treatment of UASB reactor effluent. Water Sci. Technol., 42: 111-118.