Presenting a policy model for managing the supply chain risks of raw materials in conditions of uncertainty with a systems dynamics approach (Case study: Refractory industries)
Subject Areas : Public Policy In AdministrationMehdi Yousefzadeh 1 , Naser Feghhi Farahmand 2 , Soleyman Iranzadeh 3
1 - PhD Student, Department of Industrial Management, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
2 - Associate Professor, Department of Industrial Management, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
3 - Professor, Department of Industrial Management, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
Keywords: Uncertainty, mesh line, Risk, refractory industries, System Dynamics, Supply chain,
Abstract :
Background and Aim: Due to the existing dynamics, it is necessary to achieve the goals of supply chain management of refractory industries, creating coordination between different levels of supply chain, identifying influential factors and identifying how different risks interact, which ultimately requires analyzing large volumes of information. For this purpose, the purpose of the present study is to provide a mesh line model in the management of supply chain risks of raw materials in conditions of uncertainty with a dynamic approach to systems in refractory industries. Method: In terms of purpose, the present study is part of applied research. The statistical population of the study included the managers of refractory industries in the country, which was selected as a sample size by a purposeful method available to 15 people. Library and field methods and refractory industry database tools were used to collect information. In order to analyze the data, the systems dynamics approach and Wensim software were used. Results: The simulation results showed that there are two mesh lines to reduce supply chain risks that in the structure of cooperation between suppliers and partners, it is important to pay attention to long-term returns and in shaping key factors to reduce supply chain risks in the absence of conditions. Certainty in the refractory industry, it is necessary to focus on the fact that long-term returns should be considered in the short run. Conclusion: According to the findings, in order to reduce supply chain risks in the uncertainty of refractory industries, in the short term, they should focus on reducing the level of differences in work situations and conflicts between them, and partners and suppliers in the long run to resolve conflicts. They should be non-functional in the system and keep its level to a minimum.
ایران زاده، دکترسلیمان و سالک سلطانی، زهرا، (1393)، مدیریت استرتژیک پیشرفته سازمان، فروزش، چاپ اول
جمالی، علی (1391). مدیریت ریسک زنجیره تامین، دومین همایش ملی ریاضیات و کاربردهای آن در علوم مهندسی، ساری، دانشگاه آزاد اسلامی واحد جویبار.
زندحسامی، حسام، ساوچی، آوا (1391). مدیریت ریسک در مدیریت زنجیره تأمین.مدیریت توسعه و تحول.5 (9). 37-44.
سوری, علی, عیوضی حشمت, علی اصغر, ثانوی فرد, رسول. (1400). طراحی مدل مدیریت ریسک کیفی محیطی در زنجیره تأمین بر عملکرد مالی و کیفی شرکت ایران خودرو. فصلنامه جغرافیا (برنامه ریزی منطقه ای), 11 (4), 449-471.
شاهبند زاده، حمید، کبگانی، محمد حسین (1396). تحلیل کمی ریسکهای موجود در مدیریت زنجیره تأمین سبز با استفاده از مدلسازی ریاضی.پژوهشنامه بازرگانی.21 (82). 1-32
شفیعی، مرتضی، هنرور، اندیشه (1395). ارزیابی ریسکهای زنجیره تأمین با بهرهگیری از فرایند تحلیل شبکهای (مورد مطالعه: شرکت پتروشیمی زاگرس واقع در منطقه ویژه اقتصادی پارس جنوبی). نشریه مدیریت صنعتی.11 (35). 82-102.
فقهی فرهمند، دکترناصر، (1395)، مدیریت استراتژیک پیشرفته سازمان، دانشگاه آزاداسلامی واحدتبریز، چاپ اول
محمدی، حمید (1397). مدیریت استراتژیک ریسک در زنجیره تأمین. دومین کنفرانس بین المللی مدیریت استراتژیک.
مهرگان، محمد (1396). زنجیره تامین و نقش آن در سازمان.سمت.تهران.
هاشمی نژاد, آذر, غنیان, منصور, عبد شاهی, عباس, خسروی پور, بهمن. (1399). تدوین راهبرد مدیریت ریسک زنجیره تامین نان در راستای اهداف سیاستهای کلی کشاورزی. سیاستهای راهبردی و کلان, 8 (31), 452-480
_||_Lano , M. (2018). Learning from others’misfortune:factors influencing knowledge acquisition to reduce operational risk. Oper.Manage. 31, 52-61.
Lee, R. (2016). Critical success factors for implementation of supply chain management in Indian small and medium enterprises and their impact on performance. IIMB Management Review 27, 92-104.
Hermoso-Orzáez, M.J., Garzón-Moreno, J. (2021) Risk management methodology in the supply chain: a case study applied. Ann Oper Res.1 (9). 34-55.
Khanez, S.-Y. (2018). A case study of using DEMATEL method to identify critical factors in green supply chain management. Applied Mathematics and Computation.
Junner, M. (2018). Prioritizing the responses to manage risks in green supply chain: An Indian plastic manufacturer perspective. Sustainable Production and Consumption.
Guru,J (2020). Supply Chain Risk Management: Literature Review. Risks 2021, 9 (1), 16-23.
Manmo, R. (2018). The green supply chain management risk analysis. Adv. Mater. Res. 573–574,734–739.
Nnatez, L. (2018). Complex dynamics of a MC–MS pricing model for a risk-averse supply chain with after-sale investment. Commun Nonlinear Sci Numer Simulat.
Abdel-Basset, M,. Gunasekaran, M,. Mohamed, M, and Chilamkurti,N,. (2018), A framework for risk assessment, management and evaluation: Economic tool for quantifying risks in supply chain, Future Generation Computer Systems, https://doi.org/10.1016/j.future.2018.08.035.
Cardosoa, S. R., Barbosa-Póvoa, A., Relvasa, S., & Novais, A.Q, (2014), Network Design and Planning of Resilient Supply Chains, Proceedings of the 24th European Symposium on Computer Aided Process Engineering.
Lavastre, O., Gunasekaran, A., and Spalanzani A, (2012), Supply chain risk management in french companies, Decision Support Systems, Volume. 52: pp: 828-838.
Sreedevi, R,. Saranga, H,. (2017), Uncertainty and supply chain risk: The moderating role of supply chain flexibility in risk mitigation, International Journal of Production Economics,Volume193, Pages 332-342.
Venkatesha, V,G,. Snehal, R,. Patwa, S,. (2015), Analysis on supply chain risks in Indian apparel retail chains and proposal of risk prioritization model using Interpretive structural modeling, Journal of Retailing and Consumer Services, Volume 26, Pages 153-167.