Developing a Novel Neural Network Method for Solving Variable-Order Fractional Partial Differential Equations with Time-Varying Delay
Subject Areas : Numerical Analysis
Farahnaz Golpour Lasaki
1
,
Hamideh Ebrahimi
2
*
,
Mousa Ilie
3
1 - Department of Mathematics, Rasht Branch, Islamic Azad University, Rasht, Iran
2 - Department of Mathematics, Rasht Branch, Islamic Azad University, Rasht, Iran
3 - Department of Mathematics, Rasht Branch, Islamic Azad University, Rasht, Iran
Keywords: Functional link neural network, Lagrange polynomials, Variable-order fractional operators, Time-varying delay,
Abstract :
This paper presents a novel functional link neural network for solving a class of variable-order fractional partial differential equations with time-varying delay. Due to the proficiency of Lagrange polynomials in numerical approximations for fractional calculus, these polynomials serve as the foundational neuro-solutions within the neural network. Finding the right activation functions is essential for effective learning in artificial neural networks, particularly when solving variable-order fractional derivatives and time-varying delays. To reduce the computational complexity of the proposed neural network, a linear activation function is used. Numerical simulations are carried out to demonstrate the capability of the proposed method. The neural network undergoes training using a modified Newton-Raphson method instead of the traditional learning techniques. The study’s findings indicate that the suggested functional link neural network achieves greater accuracy in comparison to some traditional methods for solving fractional partial differential equations.
Akgül, A., Inc, M., & Baleanu, D. (2017). On solutions of variable-order fractional differential equations. International Journal of Optimization and Control Theories & Applications, 7(1), 12-26. https://doi.org/10.11121/ijocta.01.2017.00368
Al-Janabi, S., & Alkaim, A. (2020). A nifty collaborative analysis to predicting a novel tool (drflls) for missing values estimation. Soft Computing, 24 (1), 38-46. https://doi.org/10.1007/s00500-019-03972-x
Al-Janabi, S., Alkaim, A., & Adil, Z. (2020). An innovative synthesis of deep learning techniques (DCapsNet & DCOM) for generation electrical renewable energy from wind energy. Methodologies and Application, 24 (1), 16-24. https://doi.org/10.1007/s00500-020-04905-9
Al-Janabi, S., Mohammad, M., & Al-Sultan, A. (2020). A new method for prediction of air pollution based on intelligent computation. Soft Computing, 24 (1), 62-76. https://doi.org/10.1007/s00500-019-04495-1
Bijiga, L. K., & Ibrahim, W. (2021). Neural network method for solving time-fractional telegraph equation. Mathematical Problems in Engineering, 12(2), 78-87. https://doi.org/10.1155/2021/7167801
Canuto, C., Hussaini, M. Y., Quarteroni, A., & Thomas, A. Jr. (2012). Spectral methods in fluid dynamics. Springer Science & Business Media. ISBN: 978-3-642-84108-8.
Chávez-Vázquez, S., Gómez-Aguilar, J. F., Lavín-Delgado, J. E., Escobar-Jiménez, R. F., & Olivares-Peregrino, V. H. (2022). Applications of Fractional Operators in Robotics: A Review. Journal of Intelligent & Robotic Systems, 104(63). https://doi.org/10.1007/s10846-022-01597-1
Choudhary, R., Singh, S., & Kumar, D. (2022). A second-order numerical scheme for the time-fractional partial differential equations with a time delay. Computational and Applied Mathematics, 88(1), 114-224. https://doi.org/10.1007/s40314-022-01810-9
Dabiri, A., Moghaddam, B. P., & Machado, J. A. T. (2018). Optimal variable-order fractional PID controllers for dynamical systems. Journal of Computational and Applied Mathematics, 339, 40-48. https://doi.org/10.1016/j.cam.2018.02.029
Dehestani, H., Ordokhani, Y., & Razzaghi, M. (2019). On the applicability of Genocchi wavelet method for different kinds of fractional-order differential equations with delay. Numerical Linear Algebra with Applications, 17 (1), 18-29. https://doi.org/10.1002/nla.2259
Diethelm, K., Kiryakova, V., Luchko, Y., Machado, J. A. T., & Tarasov, V. E. (2022). Trends, directions for further research, and some open problems of fractional calculus. Nonlinear Dynamics, 107(1), 3245-3270.
Ghazali, R., Hussain, A. J., Al-Jumeily, D., & Lisboa, P. (2009). Time series prediction using dynamic ridge polynomial neural networks. In 2009 Second International Conference on Developments in E-systems Engineering (pp. 354–363). IEEE. https://doi.org/10.1109/DeSE.2009.35
Golpour Lasaki, F., Ebrahimi, H., & Ilie, M. (2023). A novel Lagrange functional link neural network for solving variable-order fractional time-varying delay differential equations: a comparison with multilayer perceptron neural networks. Soft Computing, 27 (1), 12595-12608. https://doi.org/10.1007/s00500-023-08494-1
Hattaf, K. (2022). On the stability and numerical scheme of fractional differential equations with application to biology. Computations, 10(6). 108-126. https://doi.org/10.3390/computation10060097
Haykin, S. (1998). Neural Networks: A Comprehensive Foundation (2nd ed.). Pearson. ISBN-13: 978-0132733502.
Chen, T., Chen, H., & Liu, R. W. (1995). Approximation capability in multilayer feedforward networks and related problems. IEEE Transactions on Neural Networks, 6(1), 25-30. https://doi.org/10.1109/72.363453
Heydari, M. H., & Avazzadeh, Z. (2018). Legendre wavelets optimization method for variable-order fractional Poisson equation. Chaos, Solitons & Fractals, 112 (1), 180-190. https://doi.org/10.1016/j.chaos.2018.04.028
Hosseinpour, S., Nazemi, A., & Tohidi, E. (2018). A new approach for solving a class of delay fractional partial differential equations. Mediterranean. Journal of Mathematics, 15(1), 1-20.
https://doi.org/10.1007/s00009-018-1264-z
Kadhuim, Z. A., & Al-Janabi, S. (2023). Codon-mrna prediction using deep optimal neurocomputing technique (dlstm-dsn-woa) and multivariate analysis. Results in Engineering, 17(1), 118-132. https://doi.org/10.1016/j.rineng.2022.100847
Kheyrinataj, F., & Nazemi, A. (2019). Fractional power series neural network for solving delay fractional optimal control problems. Connection Science, 32(1), 1-28. https://doi.org/10.1080/09540091.2019.1605498
Kheyrinataj, F., & Nazemi, A. (2020). Fractional Chebyshev functional link neural network‐optimization method for solving delay fractional optimal control problems with Atangana‐Baleanu derivative. Optimal Control Applications and Methods, 27(1), 246-261. https://doi.org/10.1002/oca.2572
Kumar, P., & Erturk, V. S. (2022). The analysis of a time delay fractional COVID-19 model via Caputo type fractional derivative. Mathematical Methods in the Applied Sciences, 46(7), 23-213. https://doi.org/10.1002/mma.6935
Moghaddam, B. P. and Machado, J.T. (2017). A stable three-level explicit spline finite difference scheme for a class of nonlinear time variable order fractional partial differential equations. Computer & Mathematics with Applications, 73(6), 1262-1269. https://doi.org/10.1016/j.camwa.2016.07.010
Mohammed, G. S., & Al-Janabi, S. (2020). An innovative synthesis of optimization techniques (fdire-gsk) for generation electrical renewable energy from natural resources. Results in Engineering, 16(1), 118-126. https://doi.org/10.1016/j.rineng.2022.100637
Pao, Y.-H. (1989). Adaptive Pattern Recognition and Neural Networks. Addison-Wesley Longman Publishing Co., Inc. ISBN-13: 978-0201125849.
Patnaik, S., Hollkamp, J. P., & Semperlotti, F. (2020). Applications of variable-order fractional operators: a review. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 476(1), 226-238. https://doi.org/10.1098/rspa.2019.0498
Patra, J. C., Chin, W. C., Meher, P. K., & Chakraborty, G. (2008). Legendre-flann-based nonlinear channel equalization in wireless communication system. In 2008 IEEE International Conference on Systems, Man and Cybernetics (pp. 1826–1831). https://doi.org/10.1109/icsmc.2008.4811554
Peterson, L. E., & Larin, K. V. (2008). Hermite/laguerre neural networks for classification of artificial fingerprints from optical coherence tomography. In 2008 Seventh International Conference on Machine Learning and Applications (pp. 637–643). https://doi.org/10.1109/ICMLA.2008.36
Sheng, H., Sun, H., Chen, Y. Q., & Qiu, T. Sh. (2011). Synthesis of multifractional Gaussian noises based on variable-order fractional operators. Signal Processing, 91(7), 1645–1650. https://doi.org/10.1016/j.sigpro.2011.01.010
Singh, A. K., Mehra, M., & Gulyani, S. (2021). A modified variable-order fractional SIR model to predict the spread of COVID-19 in India. Mathematical Methods in Applied Science, 46(7), 240-248. https://doi.org/10.1002/mma.7655
Susanto, H., & Karjanto, N. (2009). Newton’s method basin of attraction revisited. Applied Mathematics and Computation, 215(1), 1084-1090. https://doi.org/10.1016/j.amc.2009.06.041
Syah, R., Guerrero, J. W. G., Poltarykhin, A. L., Suksatan, W., Aravindhan, S., Bokov, D. O., Abdelbasset, W. K., Al-Janabi, S., Alkaim, A. F., & Tumanov, D. Y. (2022). Developed teamwork optimizer for model parameter estimation of the proton exchange membrane fuel cell. Energy Reports, 8(1), 10776–10785. https://doi.org/10.1016/j.egyr.2022.08.177
Tayebi, A., Shekari, Y., & Heydari, M. H. (2017). A meshless method for solving two-dimensional variable-order time fractional advection-diffusion equation. Journal of Computational Physics, 340(1), 655-669. https://doi.org/10.1016/j.jcp.2017.03.061
Zou, A.-M., Kumar, K. D., & Hou, Z.-G. (2010). Quaternion-based adaptive output feedback attitude control of spacecraft using chebyshev neural networks. IEEE Transactions on Neural Networks, 21(7), 1457-1471. https://doi.org/10.1109/TNN.2010.2050333
Zúniga-Aguilar, C., Gómez-Aguilar, J., Escobar Jiménez, R., & Romero Ugalde, H. (2019). A novel method to solve variable-order fractional delay differential equations based in lagrange interpolations. Chaos, 29(6), 146-168. https://doi.org/10.1016/j.chaos.2019.06.009