Casimir Energy in Non-relativistic Backgrounds: Numerical Approach
Subject Areas : International Journal of Mathematical Modelling & ComputationsMozhgan Belyad 1 * , Mohammad Reza Tanhayi Tanhayi 2
1 - Department of Physics, Central Tehran Branch, Islamic Azad University, Tehran, P.O. Box 14676-86831, Iran
2 - Department of Physics, Central Tehran Branch, Islamic Azad University, Tehran, P.O. Box 14676-86831, Iran
Keywords: numerical analysis, Casimir Energy, Holographic method, Entanglement Entropy, n-Partite Information,
Abstract :
In this paper we use numerical methods to investigate the Casimir effect for a scalar field in a specific boundary condition. In order to calculate the energy-momentum tensor, the holographic method is used, and, the background is Schrodinger-type metric which is close to the classical metric. We also compute the holographic entanglement entropy, and, for two steps the mutual information is also studied. By numerical analysis, we argue that the mutual information is always positive. Furthermore, for three entangling regions, we show that the corresponding tripartite information becomes negative.
[1] Bordag, M., Klimchitskaya, G.L., Mohideen, U., Mostepanenko, V.M.: Advances in the Casimir Effect. University Press, Oxfords (2009).
[2] Milton, K.A.: The Casimir effect: recent controversies and progress. J. Phys. A 37, R209 (2004).
https://doi.org/10.1088/0305-4470/37/38/R01[hep-th/0406024]
[3] Milton, K.A.: The Casimir effect: physical manifestations of zero point energy. arXiv:9901011[hep-th]
[4] Milton, K.A., Parashar, P., Brevik, I., Kennedy, G.: Self-stress on a dielectric ball and Casimir-polder forces. Annals Phys. 412, 168008 (2020). https://doi.org/10.1016/j.aop.2019.168008. arXiv:1909.05721[hep-th]
[5] Brevik, I., Parashar, P., Shajesh, K.V.: Casimir force for magnetodielectric media. Phys. Rev. A 98(3),032509 (2018). https://doi.org/10.1103/PhysRevA.98.032509. arXiv:1808.02205[physics.class-ph]
[6] Lambrecht, A.: The Casimir effect: a force from nothing. Physics World, pp. 28–32, ISSN: 0953-8585.
http://casimir-network.fr/IMG/pdf/Casimir 20effect.pdf (2002)
[7] Trang, T.N.: Casimir effect and vacuum fluctuations.
http://www.hep.caltech.edu/phys199/lectures/lect5 6 cas.pdf (2003)
[8] Pejhan, H., Tanhayi, M.R., Takook, M.V.: Casimir effect for a scalar field via Krein quantization. Annals Phys. 341, 195–204 (2014). arXiv:1204.6001[math-ph]
[9] Hasani, M., Tavakoli, F., Tanhayi, M.R.: Radial Casimir effect in a sphere through the Krein space quantization. Mod. Phys. Lett. A 27, 1250096 (2012)
[10] Ghaffari, A., Karimaghaee, S., Tanhayi, M.R.: Vacuum energy in two dimensional box through the Krein quantization. Int. J .Theor. Phys. 56, 887–897 (2017)
[11] Maldacena, J.M.: The large N limit of superconformal field theories and supergravity. Adv. Theor.Math. Phys. 2, 231 (1998)
[12] Maldacena, J.M.: Int. J. Theor. Phys. 38, 1113 (1999). arXiv:9711200[hep-th]
[13] Gubser, S.S., Klebanov, I.R., Polyakov, A.M.: Gauge theory correlators from non-critical string theory. Phys. Lett. B 428, 105 (1998). arXiv:9802109[hep-th]
[14] Witten, E.: Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 2, 253 (1998). arXiv:9802150[hep-th]
[15] Aharony, O., Gubser, S.S., Maldacena, J.M., Ooguri, H., Oz, Y.: Large N field theories, string theory and gravity. Phys. Rept. 323, 183 (2000). arXiv:9905111[hep-th]
[16] Horowitz, G.T., Myers, R.C.: Phys. Rev. D59, 026005 (1999). arXiv:9808079[hep-th]
[17] Son, D.T.: Toward an AdS/cold atoms correspondence: a geometric realization of the Schroedinger symmetry. Phys. Rev. D 78, 046003 (2008). arXiv:0804.3972[hep-th]
[18] Balasubramanian, K., McGreevy, J.: Gravity duals for non-relativistic CFTs. Phys. Rev. Lett. 101, 061601 (2008). arXiv:0804.4053[hep-th]
[19] Goldberger, W.D.: AdS/CFT duality for non-relativistic field theory. JHEP 0903, 069 (2009). arXiv:0806.2867[hep-th]
[20] Barbon, J.L.F., Fuertes, C.A.: On the spectrum of nonrelativistic AdS/CFT. JHEP 0809, 030 (2008). arXiv:0806.3244[hep-th]
[21] Kachru, S., Liu, X., Mulligan, M.: Gravity duals of lifshitz-like fixed points. Phys. Rev. D 78, 106005 (2008). arXiv:0808.1725[hep-th]
[22] Taylor, M.: Non-relativistic holography, arXiv:0812.0530[hep-th]
[23] Ryu, S., Takayanagi, T.: Aspects of holographic entanglement entropy. JHEP 0608, 045 (2006).
https://doi.org/10.1088/1126-6708/2006/08/045[hep-th/0605073]
[24] Hayden, P., Headrick, M., Maloney, A.: Holographic mutual information is monogamous. Phys. Rev. D 87(4), 046003 (2013). https://doi.org/10.1103/PhysRevD.87.046003. arXiv:1107.2940[hep-th]
[25] Dong, X., Harrison, S., Kachru, S., Torroba, G., Wang, H.: Aspects of holography for theories with hyperscaling violation. arXiv:1201.1905[hep-th]
[26] Alishahiha, M., Colgain, E.O., Yavartanoo, H.: Charged black branes with hyperscaling violating factor. JHEP 1211, 137 (2012). https://doi.org/10.1007/JHEP11(2012)137. arXiv:1209.3946[hep-th]
[27] Alishahiha, M., Astaneh, A.F., Mozaffar, M.R.M., Mollabashi, A.: Complexity growth with lifshitz scaling and hyperscaling violation. JHEP 1807, 042 (2018). https://doi.org/10.1007/JHEP07(2018)042. arXiv:1802.06740[hep-th]
[28] Taylor, M.: Lifshitz holography. Class. Quant. Grav. 33(3), 033001 (2016).
https://doi.org/10.1088/0264- 9381/33/3/033001. arXiv:1512.03554[hep-th]
[29] Kim, B.S.: Schr¨odinger holography with and without hyperscaling violation. JHEP 1206, 116 (2012).
https://doi.org/10.1007/JHEP06(2012)116. arXiv:1202.6062[hep-th]
[30] Casini, H., Huerta, M.: Remarks on the entanglement entropy for disconnected regions. JHEP 0903, 048 (2009). arXiv:0812.1773[hep-th]
[31] Wolf, M.M., Verstraete, F., Hastings, M.B., Cirac, J.I.: Area laws in quantum systems: mutual information and correlations. Phys. Rev. Lett. 100(7), 070502 (2008). https://doi.org/10.1103/PhysRevLett.100. 070502. arXiv:0704.3906[quant-ph]
[32] Headrick, M.: Entanglement Renyi entropies in holographic theories. Phys. Rev. D 82, 126010 (2010). arXiv:1006.0047[hep-th]
[33] Fischler, W., Kundu, A., Kundu, S.: Holographic mutual information at finite temperature. Phys. Rev. D 87, 126012 (2013). arXiv:1212.4764[hep-th]
[34] Mirabi, S., Tanhayi, M.R., Vazirian, R.: On the monogamy of holographic n-partite information. Phys. Rev. D 93(10), 104049 (2016). https://doi.org/10.1103/PhysRevD.93.104049. arXiv:1603.00184[hep-th]
[35] Headrick, M., Takayanagi, T.: A holographic proof of the strong subadditivity of entanglement entropy. Phys. Rev. D 76, 106013 (2007). https://doi.org/10.1103/PhysRevD.76.106013. arXiv:0704.3719[hepth]
[36] Allais, A., Tonni, E.: Holographic evolution of the mutual information. JHEP 1201, 102 (2012). 10.1007/JHEP01(2012)102. arXiv:1110.1607[hep-th]
[37] Wall, A.C.: Maximin surfaces, and the strong subadditivity of the covariant holographic entanglement entropy. Class. Quant. Grav. 31(22), 225007 (2014). https://doi.org/10.1088/0264-9381/31/22/225007. arXiv:1211.494[hep-th]
[38] Alishahiha, M., Mozaffar, M.R.M., Tanhayi, M.R.: On the time evolution of holographic n-partite information. JHEP 1509, 165 (2015). https://doi.org/10.1007/JHEP09(2015)165. arXiv:1406.7677[hep-th]
[39] Flory, M., Erdmenger, J., Fernandez, D., Megias, E., Straub, E., Witkowski, P.: Time dependence of entanglement for steady state formation in AdS3/CFT2. J. Phys. Conf. Ser. 942(1), 012010 (2017).
https://doi.org/10.1088/1742-6596/942/1/012010. arXiv:1709.08614[hep-th]
[40] Tanhayi, M.R., Vazirian, R.: Higher-curvature corrections to holographic entanglement with momentum dissipation. Eur. Phys. J. C 78(2), 162 (2018). https://doi.org/10.1140/epjc/s10052-018-5620-8. arXiv:1610.08080[hep-th]
[41] Aref’eva, I., Volovich, I.: Holographic photosynthesis. arXiv:1603.09107[hep-th]
[42] Tanhayi, M.R.: Universal terms of holographic entanglement entropy in theories with hyperscaling violation. Phys. Rev. D 97(10), 106008 (2018). https://doi.org/10.1103/PhysRevD.97.106008. arXiv:1711.10526[hep-th]
[43] Erdmenger, J., Fernandez, D., Flory, M., Megias, E., Straub, A.K., Witkowski, P.: Time evolution of entanglement for holographic steady state formation. JHEP 1710, 034 (2017). https://doi.org/10.1007/ JHEP10(2017)034. arXiv:1705.04696[hep-th]
[44] Hyden P., Headrick M., Maloney A.: Holographic mutual information is monogamous. Phys. Rev. D 87, 046003 (2013).https://doi.org/10.48550/arXiv.1107.2940