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Abstract. In this paper we use numerical methods to investigate the Casimir effect for a scalar 

field in a specific boundary condition. In order to calculate the energy-momentum tensor, the 

holographic method is used, and, the background is Schrödinger-type metric which is close to the 

classical metric. We also compute the holographic entanglement entropy, and, for two steps the 

mutual information is also studied. By numerical analysis, we argue that the mutual information 

is always positive. Furthermore, for three entangling regions, we show that the corresponding 

tripartite information becomes negative. 
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Index to information contained in this paper 

1. Introduction 

One of the manifestations of macroscopic zero-point energy in the Quantum Field Theory 

is the Casimir effect, which expresses the non-trivial properties of the vacuum state. In 

simple experimental terms, the attractive force between two parallel conductive plates that 

are electrically neutral and located in a vacuum is called the Casimir effect, which is caused 

by the presence of the vacuum. Theoretically, the Casimir effect can be considered as a 

result of the zero-point fluctuation spectrum in the presence and absence of these plates. It 

is noteworthy that the zero-point energy of any relativistic field is obtained under boundary 

conditions. In this view, the virtual particle-antiparticle pairs have the ability to create and 

annihilate in vacuum [1,2,3,4,5]. 

Basically the Casimir effect is a completely quantum effect and its computation needs to 

consider the quantum fields with some specific boundary conditions. Usually there are no 

analytic solution and in most cases numerical methods are needed. In this paper we study 
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a scalar field and use numerical method to calculate Casimir effect. We use Anti-de Sitter 

space/Conformal Field Theory correspondence (AdS/CFT) to calculate the vacuum energy 

of a given system in the non-relativistic background. 

In order to expand the initial studies of Casimir energy in reference [8], we can used the 

AdS/CFT correspondence, which expresses a relation between the quantum physics of 

strongly correlated    many-body systems and classical gravitational dynamics of a higher 

dimension. According to this correspondence, the asymptotic metric determines the 

expectation value of all the individual components of the energy-momentum tensor and 

the corresponding energy is calculated from relation 𝐸 = ∫〈𝑇00〉 [6,7,8]. 

Nowadays, more general classifications of metric than metrics with asymptotic AdS 

boundaries are used in investigating some feature of condense matter systems. For 

example, in recent AdS/CFT applications, a hypersurface violation of the dual quantum 

field Theory is shown by a metric that transforms covariantly under dilatation. We use this 

tool to extend in the context of Schrödinger holography and lifshitz spacetime [9,10,11]. 

2. Review 

2-1. Lifshitz Metric 

Holographic dual of physical systems in critical points with different space-time scales is 

given by Lifshitz metric. The time and space are scaled as 𝑥𝑖 → 𝜉𝑥𝑖  , 𝑟 → 𝜉𝑟 , 𝑡 → 𝜉𝑧𝑡; 
where z is the dynamical critical component. The Lifshitz metric is: 

𝑑𝑠2 = 𝐿2𝑟−2 (−𝑟−2(𝑧−1)𝑑𝑡2 + 𝑑𝑟2 +∑𝑑𝑥𝑖
2

𝑑

𝑖=1

) 

 

(1) 

Where L is the geometric radius. Due to an anisotropy between space and time, the above 

metric cannot be an ordinary solution for the Einstein equation; To break this anisotropy, 

some kinds of material fields are needed [8,27,46]. In general, the metric corresponding to 

the hyperscaling violating geometries is as follows: 

𝑑𝑠2 = 𝐿2 𝑟
𝑓

−
2𝜃

𝑑  𝑟−2
(
𝑑−𝜃

𝑑
)
(−𝑓(𝑟)𝑟−2(𝑧−1)𝑑𝑡2 +

1

𝑓(𝑟)
𝑑𝑟2 +∑𝑑𝑥𝑖

2

𝑑

𝑖=1

)            

𝑡ℎ𝑎𝑡 ∶ 𝑓(𝑟) = 1 − (
𝑟

𝑟ℎ
)
𝑑+𝑧−𝜃

 

 

(2) 

Where 𝜃  is the hyperscaling violating factor, 𝑟𝑓  is a dynamical scale. The appeared 

parameters are included the two conditions by considering null energy [26,16] and scale 

transmation: 

(𝑧 − 1)(𝑑 + 𝑧 − 𝜃) ≥ 0   ,   (𝑑 − 𝜃)(𝑑(𝑧 − 1) − 𝜃) ≥ 0      

                                   𝑎𝑛𝑑      𝑑𝑠 → 𝜉
𝑑

𝜃 𝑑𝑠 
 

(3) 

Because metric (2) is not invariant, the above scale transmation has been applied. 

2-2. Schrödinger-type Metric 

The non-relativistic Schrodinger-type metric with Galilean scaling and for 2+d 

dimensional theories is as:  

𝑑𝑠2 = 𝑟−2+2𝜃 𝑑⁄ (−𝑟−2(𝑧−1)𝑑𝑡2 − 2𝑑𝑡 𝑑𝜒 + 𝑑𝑟2 +∑𝑑𝑥𝑖
2

𝑑

𝑖=1

). 
 

(4) 
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Under the special conformal transformation, we will have: 

�⃗�′ =
�⃗�

1 + 𝑡
 ,         𝑡′ =

𝑡

1 + 𝑡
 ,         𝑟′ =

𝑟

1 + 𝑡
 ,         𝜒′ = 𝜒 +

𝑐

2

�⃗�. �⃗� + 𝑟2

1 + 𝑡
   

      ⟹         𝑑𝑠 → (
𝑟

1 + 𝑡
)

𝜃

𝑑
 𝑑𝑠 

(5) 

3. Energy-Momentum Tensor 

The Ricci scalar curvature for the metric (4) is obtained as follows: 

𝑅 =
1

𝑟2𝜃 𝑑⁄

(𝑑 + 1)(𝜃 − 𝑑)(𝑑(𝑑 + 2) − 𝑑𝜃)

𝑑2
 

 

(6) 

The Ricci scalar curvature is constant for 𝜃 = 0. And the quasilocal energy-momentum 

tensor with a boundary metric of a given gravity theory 𝛾𝜇𝜈 is as follows: 

𝑇𝜇𝜈 =
2

√−𝛾

𝛿𝑆

𝛿𝛾𝜇𝜈
 

 

(7) 

Where S is action. The energy-momentum tensor is divergence at the boundary. To 

eliminate this divergency, a boundary term (that does not affect the bulk equations of 

motion) can be added to the action. In other words, using the AdS/CFT correspondence, 

(7) is as the expectation value of the stress tensor in the CFT: 

𝑇𝜇𝜈 =
2

√−𝛾

𝛿𝑆𝑒𝑓𝑓
𝛿𝛾𝜇𝜈

. 
 

(8) 

The zero-zero component of the energy tensor is calculated as follows: 

𝑇00 =
2𝑑2(2 + (𝑑 − 3)𝑧 + 2𝑧2) − 2𝑑((𝑑 + 1) + 𝑑𝑧)𝜃 + 2𝑑𝜃2 + (𝑑 + 1)(𝜃 − 𝑑)(𝑑(𝑑 + 2) − 𝑑𝜃)

16𝜋𝐺𝑑2𝑟2𝑧
 

 

(9) 

Therefore, the energy between two infinite planes at 𝑟𝑐1 , 𝑟𝑐1  for d=3 with 𝜃 = 0, 𝑧 =

1 will be as follows: 

𝐸 = ∫𝑇00√−𝑔𝑑
5𝑥 =

𝑉4
32𝜋𝐺𝑁

(
1

𝑟𝑐2
6 −

1

𝑟𝑐1
6). 

 

(10) 

4. Holographic Energy-Momentum Tensor  

The energy-momentum tensor gives us information about the number of degrees of 

freedom and conformal anomalies. Considering the high importance of the energy-

momentum tensor and its expectation value, here we briefly review the method of 

calculating the Brown-York stress tensor. The induced metric with a radial cutoff at the 

hypersurface 𝑟 = 𝑟𝑐 from the metric (4) and the extrinsic curvature is given by: 

𝛾𝜇𝜈 = 𝑔𝜇𝜈 − 𝑛𝜇𝑛𝜈         ,            𝐾𝜇𝜈 = −𝛾𝜇
𝜌
Δ𝜌𝑛𝜈 . (11) 

Where 𝑛𝜇 is the unit normal vector of timelike surface. And the quasilocal stress tensor is 

expressed by: 

𝜏𝜇𝜈 = 𝐾𝜇𝜈 − 𝛾𝜇𝜈𝐾 (12) 

According to the AdS/CFT correspondence and the limit of 𝑟+ → 0, we will have: 

√−ℎℎ𝜇𝜌〈𝑇𝜌𝜈〉 = lim
𝑟𝑐→0

√−𝛾 𝛾𝜇𝜌𝜏𝜌𝜈 (13) 

Which in the hypersurface 𝑟 = 𝑟𝑐, the induced metric will be as follows: 
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𝛾𝜇𝜈 = 𝑟𝑐
−2+2𝜃 𝑑⁄ (−𝑟𝑐

−2(𝑧−1)𝑑𝑡2 − 2𝑑𝑡 𝑑𝜒 +∑𝑑𝑥𝑖
2

𝑑−1

𝑖=1

) 

 

(14) 

Now, by using the above equation, the expectation value of the zero-zero component of 

the stress tensor is obtained by: 

〈𝑇00〉 = −
𝑑 + 1 − 𝑧 − 𝜃

𝑟𝑐
𝑑+1−𝜃

ℎ00 =
𝑑 + 1 − 𝑧 − 𝜃

𝑟𝑐
𝑑−1−𝜃+2𝑧

. 
 

(15) 

5. Casimir Energy 

Now let us consider the zero-point energy in a box of size a at the boundary 𝑟𝑐 which is 

located between 𝜒1 and 𝜒2. Putting these plates will affect the modes inside and outside 

the plate and a 1+1-dimensional box, one obtains: 

𝐸(𝜒) =
1

2𝜋

2 − 𝑧 − 𝜃

𝑟𝑐
−𝜃+2𝑧

ℏ𝑎∫𝜔𝑑𝑘 
 

(16) 

Where as usual we have define 𝜔𝑘 = ℏ𝑘. The above integral is clearly infinite. However, 

making use of the damping function as 𝑒−Λ𝜔𝑛 where Λ is defined as a natural size leading 

to a high frequency cutoff,    𝜔 ≤ 𝜋Λ which leads to: 

𝐸(𝜒, Λ) =
1

2𝜋

2 − 𝑧 − 𝜃

𝑟𝑐
−𝜃+2𝑧

ℏ𝑎∫𝑘𝑒−Λ𝑘𝑑𝑘 
(17) 

Now as usual in computing the Casimir energy one can obtain the renormalized Casimir 

energy in this setup by subtracting the above integral with same value which is calculated 

without the boundary, namely one has: 

𝐸𝑅(𝜒) = lim
Λ→0

[
2 − 𝑧 − 𝜃

2𝑟𝑐
−𝜃+2𝑧

(
1

𝜋
∫𝑘𝑒−Λ𝑘𝑑𝑘 −∑

𝑛𝜋ℏ

𝑎
𝑛

𝑒−Λnπ 𝑎⁄ )]

= −
2 − 𝑧 − 𝜃

𝑟𝑐
−𝜃+2𝑧

𝜋ℏ

24𝑎
 

 

(18) 

CFT at the boundary 𝑟 = 𝑟𝑐 causes the creation of this negative energy density, which can 

be considered the same as Casimir energy. Therefore, the Casimir force can be obtained as 

follows: 

𝐹 = −
𝑑

𝑑𝜒
𝐸𝑅(𝜒) = −

2 − 𝑧 − 𝜃

𝑟𝑐
−𝜃+2𝑧

𝜋ℏ

24𝑎2
 

 

(19) 

For this one dimensional box, the null energy consideration implies that z=1 and 𝜃 < 1. 

From these expressions, we observe that the hyperscaling violation has the effect of 

modifying the Casmir energy by shifting its value. 

6- Holographic n-Partite Information 

In this section, we want to obtain mutual information and tripartite information. Consider 

a strip as an entangling region located at 𝑟 = 𝜖 in the given background: 

−
𝑙

2
≤ 𝑥1 ≤

𝑙

2
             ,             0 ≤ 𝑥𝑎 ≤ 𝐿     (𝑎 = 2,… , 𝑑). 

 

 (20) 

Holographic entanglement entropy is given as follows: 

𝑆(𝑙) =
𝐿𝑑−2

𝑑 − 𝑧 − 𝜃

𝐻

𝑅𝜃
(

1

𝜖𝑑−𝑧−𝜃
−

𝑐𝜃
𝑙𝑑−𝑧−𝜃

) 
 

 (21) 

For 𝜃 = 0 and 𝑧 = 𝑑: 
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𝑆(𝑙) = 𝐿𝑑−2𝐻 log (
2𝑙

𝜖
) 

 

 (22) 

Mutual information is a subset of n-partite information with 𝑛 = 2  in quantum 

information literature. As we know, entanglement entropy measures the quantum 

correlation between two subsystems A and its complement. Therefore, mutual information 

is used to determine the amount of entanglement or shared information between two 

subsystems. Consider a system of two disjoint parts 𝐴1 and 𝐴2. Mutual information is 

given by: 

𝐼(𝐴1, 𝐴2) = 𝑆(𝐴1) + 𝑆(𝐴2) − 𝑆(𝐴1 ∪ 𝐴2)  (23) 

Where 𝑆(𝐴1 ∪ 𝐴2), the union of two entangling regions, is the entanglement entropy [59]. 

For two operators as 𝒪𝐴1  and 𝒪𝐴2  in the regions 𝐴1  and 𝐴2  respectively, mutual 

information sets an upper bound in both quantum and classical correlations between them 

is as follows [57]: 

𝐼(𝐴1, 𝐴2) ≥
(〈𝒪𝐴1𝒪𝐴2〉 − 〈𝒪𝐴1〉〈𝒪𝐴2〉)

2

2〈𝒪2𝐴1〉〈𝒪
2
𝐴2
〉

 
 

(24) 

Therefore, mutual information expresses not only the total correlation between two 

subsystems, rather from its definition, it can be seen that it is UV-cutoff independent and 

free of divergences. 

There is a phase transition [58] that be raised from the union of two entangling regions and 

affects the calculation of mutual information. Here, the presence of a critical distance 

causes the two subsystems  𝐴1 and 𝐴2 to be completely separated; in other words, the 

mutual information vanishes as the distance between two subsystems increases, which is 

called disentangling transition. Within the holographic point of view, this phase transition 

has a simple explanation [59]. The minimal area surfaces for union entanglement entropy 

exists in two ways shown in Figure 2 for two strips with length l and distance h from each 

other, one of which is used according to the separation between two subsystems. 

  
Figure 2. Showing two different structures of calculation 𝑆(𝐴1 ∪ 𝐴2). According to the 

value of the parameters, the minimum state can be changed from one to another. 

The corresponding minimal configurations can change from one shape to another, 

depending on the value of  ℎ 𝑙⁄ , which leads to the definition of a critical ratio as follows: 

𝑟𝑐𝑟𝑖𝑡. =
ℎ

𝑙
 

 

(25) 

 

Which: 

𝑆(𝐴1 ∪ 𝐴2) = {
𝑆𝑐𝑜𝑛.
𝑆𝑑𝑖𝑠. 

          
        0 <

ℎ

𝑙
< 𝑟𝑐𝑟𝑖𝑡.

 𝑟𝑐𝑟𝑖𝑡. ≤
ℎ

𝑙

    
 

(26) 

Evolution of entanglement entropy for two minimal configurations is shown in figure 3. 

This plot shows that disconnected configuration has the minimal area with this range of 

parameters. 
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Figure 3. Evolution of entanglement entropy for two minimal configurations for 𝑙 = 4.5 and ℎ = 2.1, 2.2, 2.4, 2.6. 

The dashed curve represents disconnected configuration is independent of  h. 

Therefore, from (26), the holographic mutual information will have two answers as 

follows: 

𝐼(𝐴1, 𝐴2) = {
2𝑆(𝑙) − 𝑆(ℎ) − 𝑆(ℎ + 2𝑙)                              

 
0                                                                         

        0 <
ℎ

𝑙
< 𝑟𝑐𝑟𝑖𝑡.

 𝑟𝑐𝑟𝑖𝑡. ≤
ℎ

𝑙

 

 

(27) 

Therefore, the finite part of mutual information with the special case of logarithmic is 

obtained as follows: 

𝐼(𝐴1, 𝐴2) = 𝐻𝐿
𝑑−2  log

ℎ(2𝑙 + ℎ)

𝑙2
 

 

(28) 

As seen in Figure 4, the holographic mutual information starts from the initial value at 𝜃 =
0 and is always positive. 

 
Figure 4. Numerical results for holographic mutual information: Left: Holographic mutual information as a function 

of h with 𝑙 = 1,2,3,4,5. Right: 3D graph of holographic mutual information. 

Now we consider a system with three strips, which is called tripartite information and is 

defined by: 

𝐼[3](𝐴1, 𝐴2, 𝐴3) = 𝑆(𝐴1) + 𝑆(𝐴2) + 𝑆(𝐴3) −  𝑆(𝐴1 ∪ 𝐴2)
− 𝑆(𝐴1 ∪ 𝐴3) − 𝑆(𝐴2 ∪ 𝐴3) + 𝑆(𝐴1 ∪ 𝐴2 ∪ 𝐴3). 

 

(29) 

Similar to mutual information, the most important part is, finding the minimal surfaces for 

each of the union sentences, which was investigated in Einstein’s gravity [7]. Here, we 

generalize the results to the non-relativistic Schrödinger background. For union sentences, 

we can write: 

𝑆(𝐴1 ∪ 𝐴2) = {
2𝑆(𝑙)                                                                           ≡ 𝑆1
𝑆(2𝑙 + ℎ) + 𝑆(ℎ)                                                     ≡ 𝑆2

 

𝑆(𝐴1 ∪ 𝐴3) = {
2𝑆(𝑙)                                                                            ≡ 𝑆3
𝑆(3𝑙 + 2ℎ) + 𝑆(2ℎ + 𝑙)                                          ≡ 𝑆4

 

𝑆(𝐴2 ∪ 𝐴3) = {
2𝑆(𝑙)                                                                            ≡ 𝑆5
𝑆(2𝑙 + ℎ) + 𝑆(ℎ)                                                      ≡ 𝑆6

 

 

 

(30) 
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And: 

𝑆(𝐴1 ∪ 𝐴2 ∪ 𝐴3) =

{
 
 

 
 
3𝑆(𝑙)                                                               ≡ 𝑆7
𝑆(𝑙) + 𝑆(2𝑙 + ℎ) + 𝑠(ℎ)                             ≡ 𝑆8
𝑆(2𝑙 + ℎ) + 𝑆(ℎ) + 𝑆(𝑙)                             ≡ 𝑆9
𝑆(3𝑙 + 2ℎ) + 𝑆(2ℎ + 𝑙) + 𝑆(𝑙)                   ≡ 𝑆10
𝑆(3𝑙 + 2ℎ) + 2𝑆(ℎ)                                       ≡ 𝑆11

 

 

(31) 

The graph related to the tripartite information in terms of hyperscaling violating parameter 

and as well as a function of the separation between the entangling regions is shown in 

Figure 5, which is negative as can be seen. 

 
Figure 5. Numerical results for holographic mutual information: Left: Holographic tripartite information as a 

function of h with   𝑙 = 1,2,3,4,5. Right: 3D graph of holographic tripartite information. 

7- Conclusion 

In this paper, we investigated the mutual and tripartite information for non-relativistic 

Schrodinger-type geometry. The non-negative mutual information indicates the 

subadditivity of entropy. On the other hand, this quantity is always negative for three 

regions. 

The non-negativity of the mutual information leads to the following inequality: 

𝑆(𝐴1) + 𝑆(𝐴2) − 𝑆(𝐴1 ∪ 𝐴2) ≥ 0 (32) 

Which includes a set of other inequalities for tripartite information. In standard holographic 

calculation of entanglement entropy for three entangling regions is as follows [12,61]: 

𝑆(𝐴1 ∪ 𝐴2) + 𝑆(𝐴2 ∪ 𝐴3) − 𝑆(𝐴1 ∪ 𝐴2 ∪ 𝐴3) − 𝑆(𝐴2) ≥ 0 (33) 

It is obtained from equations (23) and (29): 

𝐼[3](𝐴1, 𝐴2, 𝐴3) = 𝐼
[2](𝐴1, 𝐴2) + 𝐼

[2](𝐴1, 𝐴3) − 𝐼
[2](𝐴1, 𝐴2 ∪ 𝐴3) (34) 

By generalizing relation (34) for n regions, we get a sum over all possible combinations as 

follows [44]: 

𝐼𝑛(𝐴1, 𝐴2, 𝐴3, … ) =∑(−1)|𝜎|𝑆(𝜎)

𝜎

 (35) 

Considering that tripartite information is always negative, it leads to the following 

inequality: 

𝐼[2](𝐴1, 𝐴2) + 𝐼
[2](𝐴1, 𝐴3) ≤ 𝐼

[2](𝐴1, 𝐴2 ∪ 𝐴3) (36) 

The above inequality in quantum information theory means that the sharing of entangling 

correlation between two systems 𝐴1 and 𝐴2 with 𝐴3 leads to spoil the original entropy; 

this feature is called monogamy, which is a property of holographic theories for large-N 

limit. When bulk quantum effects are important, this property does not persist at finite N 

[44]. 
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