Harnessing Satureja Mutica Extract for Green Synthesis of Zinc Oxide Nanoparticles: Antibacterial Efficacy and Catalytic Applications in Xanthene Synthesis
Subject Areas :Zahra lasemi 1 * , Razieh Azimi 2
1 - Department of Chemistry, South Tehran Branch, Islamic Azad University, Tehran, Iran
2 - Research Institute of Forests and Rangelands, Agricultural Research Education and Extension Organization (AREEO), Tehran, Iran
Keywords: Zinc Oxide Nanoparticles, Satureja mutica, Green Synthesis, Catalysis, Antibacterial Activity, Xanthene Derivatives, Nanoparticle Characterization,
Abstract :
In this study, zinc oxide nanoparticles (ZnO NPs) were synthesized via a green chemistry approach using Satureja mutica extract as both a reducing and capping agent. The successful formation of ZnO NPs was confirmed through UV–visible spectroscopy, which revealed surface plasmon resonance at 356 nm. Fourier Transform Infrared Spectroscopy (FTIR) analysis identified phenolic compounds in the plant extract responsible for nanoparticle reduction and stabilization. Characterization of the ZnO NPs using Field Emission Scanning Electron Microscopy (FESEM), X-ray Diffraction (XRD), and Dynamic Light Scattering (DLS) showed that the nanoparticles are spherical with an average diameter of 42 nm and exhibit high stability. The catalytic potential of these biosynthesized ZnO NPs was evaluated in the synthesis of xanthene derivatives through a reaction of aromatic aldehydes with dimedone, yielding products with efficiencies ranging from 85% to 98%. Furthermore, antibacterial assays demonstrated that the ZnO NPs exhibit significant inhibitory effects against both Gram-positive and Gram-negative bacterial strains. These findings underscore the efficacy of Satureja mutica extract as a sustainable, non-toxic, and biocompatible method for ZnO NP synthesis, with substantial potential for applications in catalysis, bioecology, and biomedical fields.
[1] J. Ramsden, Nanotechnology: An Introduction; William Andrew (2016).
[2] B.D. Yao, Y.F. Chan, N. Wang, Formation of ZnO nanostructures by a simple way of thermal evaporation. Appl. Phys. Lett. (2002) 81, 757–759.
[3] N.R.E. Radwan, M.S. El-Shall, H.M.A. Hassan, Synthesis and characterisation of nanoparticle Co3O4, CuO and NiO catalysts prepared by physical and chemical methods to minimize air pollution, Appl. Catal. A Gen. (2007) 331, 8–18.
[4] C.C. Lin, Y.Y. Li, Synthesis of ZnO nanowires by thermal decomposition of zinc acetate dehydrate. Mater. Chem. Phys. (2009) 113, 334–337.
[5] J.N. Hasnidawani, H.N. Azlina, H. Norita, N.N. Bonnia, S. Ratim, E.S. Ali, Synthesis of ZnO nanostructures using sol-gel method. Procedia Chem. (2016) 19, 211–216.
[6] O.V. Kharissova, H.V.R. Dias, B.I. Kharisov, B.O. Pérez, V.M.J. Pérez, The greener synthesis of nanoparticles. Trends Biotechnol. (2013) 31, 240–248.
[7] S.M. Ouda, Antifungal activity of silver and copper nanoparticles on two plant pathogens, Alternaria alternata and Botrytis cinerea. Res. J. Microbiol. (2014) 9, 34–42.
[8] S. Vanaraj, B.B. Keerthana, K. Preethi, Biosynthesis, characterization of silver nanoparticles using quercetin from clitoria ternateaL to enhance toxicity against bacterial biofilm. J. Inorg. Organomet. Polym. Mater. (2017) 27, 1412–1422.
[9] V.V. Makarov, A.J. Love, O.V. Sinitsyna, S.S. Makarova, I.V. Yaminsky, M.E. Taliansky, N.O. Kalinina, Green nanotechnologies: synthesis of metal nanoparticles using plants. Acta. Nat. (2006) 6, 25-36.
[10] S. Iravani, Green synthesis of metal nanoparticles using plants. Green Chem. (2011) 13, 2638-2650.
[11] S. Kaviya, J. Santhanalakshmi, B. Viswanathan, J. Muthumary, K. Srinivasan, Biosynthesis of silver nanoparticles using Citrus sinensis peel extract and its antibacterial activity. Spectrochim. Acta. A Mol. Biomol. Spectrosc. (2011) 79, 594-598.
[12] A.K. Mittal, Y. Chisti, U.C. Banerjee, Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv. (2013) 31, 346-356.
[13] J.Y. Song, H.K. Jang, B.S. Kim, Biological synthesis of gold nanoparticles using Magnolia Kobus and Diopyros kaki leaf extracts. Process Biochem. (2009) 44, 1133-1138.
[14] (a) M.S. Chavali, M.P. Nikolova, Metal oxide nanoparticles and their applications in nanotechnology, SN Appl. Sci. (2019) 1, 607. (b) S. Abdolmohammadi, ZnO nanoparticles-catalyzed cyclocondensation reaction of arylmethylidenepyruvic acids with 6-aminouracils. Comb. Chem. High Throughput Screen. (2013) 16, 32-36. (c) L.A. Kolahalam, I.K. Viswanath, B.S. Diwakar, B. Govindh, V. Reddy, Y. Murthy, Review on nanomaterials: Synthesis and applications. Mat. Today Proc. (2019) 18, 2182–2190. doi: 10.1016/j.matpr.2019.07.371.
[15] (a) L.S., Arias J.P., Pessan A.P.M., Vieira T.M.T., de Lima A.C.B., Delbem D.R. Monteiro Iron Oxide Nanoparticles for Biomedical Applications: A Perspective on Synthesis, Drugs, Antimicrobial Activity, and Toxicity. Antibiotics (2018) 7, 46. (b) S. Abdolmohammadi, M. Afsharpour, S. Keshavarz-Fatideh, An efficient green synthesis of 3-amino-1H-chromenes catalysed by ZnO nanoparticles thin-film. S. Afr. J. Chem. (2014) 67, 203-210.
[16] G. Bisht, S. Rayamajhi, ZnO Nanoparticles: A promising anticancer agent. Nanobiomed. (2016) 3, 9
[17] X. Yang, C. Zhang, A. Li, J. Wang, X. Cai, Red fluorescent ZnO nanoparticle grafted with polyglycerol and conjugated RGD peptide as drug delivery vehicles for efficient target cancer therapy. Mater. Sci. Engg. C (2019) 95, 104–113.
[18] B.L. da Silva, B.L. Caetano, B.G. Chiari- Andréo, R.C.L.R. Pietro, L.A. Chiavacci, Increased antibacterial activity of ZnO nanoparticles: Influence of size and surface modification. Colloids Surf. B Biointerf. (2019) 177, 440–447.
[19] K. San Tang, The current and future perspectives of zinc oxide nanoparticles in the treatment of diabetes mellitus. Life Sci. (2019) 239, 117011.
[20] A.G. Pirbalouti, M. Oraie, M. Pouriamehr, E.S. Babadi, Effects of drying methods on qualitative and quantitative of the essential oil of Bakhtiari savory (Satureja bachtiarica Bunge.). Indian Crop. Prod. (2013) 46, 324-327.
[21] Z. Jamzad, Thyme and Horses of Iran. Forests and Rangelands Research Institute of Iran Publications, Tehran. (2009) 171.
[22] J. Hadian, M. Akramian, H. Heydari, H. Mumivand, B. Asghari, Composition and in vitro antibacterial activity of essential oils from four Satureja species growing in Iran. Nat. Prod. Res. (2012) 26, 98-108.
[23] F. Sefidkon, Z. Jamzad, Chemical composition of the essential oil of three Iranian Satureja species (S.mutica, S.macrantha and S.intermedia). Food Chem. (2005) 91, 1-4.
[24] S. Saei‐Dehkordi, A.A. Fallah, M. Heidari‐Nasirabadi, M. Moradi, Chemical composition, antioxidative capacity and interactive antimicrobial potency of Satureja khuzestanica Jamzad essential oil and antimicrobial agents against selected food‐related microorganisms. Int. J. Food Sci. Technol. (2012) 47, 1579- 1585.
[25] E. Karimi, A. Ghasemnezhad, J. Hadian, M. Ghorbanpour, Assessment of essential oil constituents and main agromorphological variability in Satureja mutica populations. Braz. J. Bot. (2016) 39, 77-85.
[26] A. Saki, H. Mozafari, K. K. Asl, B. Sani, M. Mirza, Plant Yield, Antioxidant Capacity and Essential Oil Quality of Satureja mutica Supplied with Cattle Manure and Wheat Straw in Different Plant Densities. Commun. Soil Sci. Plant Anal. (2019) 50, 2683-2693.
[27] S. Vijayakumar, C. Krishnakumar, P. Arulmozhi, S. Mahadevan, N. Parameswari, Biosynthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from leaf extract of Glycosmis pentaphylla (Retz.) DC. Microb. Pathog. (2018) 116, 44-48
[28] S.S. Scaria, J.K. Sebastian, Novel biocompatible zinc oxide nanoparticle synthesis using Quassia indica leaf extract and evaluation of its photocatalytic, antimicrobial, and cytotoxic potentials. Biomass Convers Biorefin. (2023) https://doi.org/ 10.1007/s13399-023-04989-x
[29] T. Kumar, R. Kumar, S. Kumar, N. Kalra, S. Sharma, A. Singh, Green synthesis of zinc oxide nanoparticles from Rhododendron arboreum extract and their potential applications in photocatalytic degradation of cationic dyes malachite green and Fuchsin basic dye. Chem. Pap. (2023) 77, 6583–6604.
[30] D. Kalaimurgan, K. Lalitha, R.K. Govindarajan, K. Unban, M.S. Shivakumar, S. Venkatesan, C. Khanongnuch, F.M. Husain, F.A. Qais, I. Hasan, P. Karuppiah, A. Khan, M. Adil, Biogenic synthesis of zinc oxide nanoparticles using Drynaria Quercifolia tuber extract for antioxidant, antibiofilm, larvicidal, and photocatalytic applications. Biomass Convers Biorefin. (2023) https://doi.org/ 10. 1007/ s13399-023-04751-3
[31] I. lashin, M. Hasanin, S.A.M. Hassan, A.H. Hashem, Green biosynthesis of zinc and selenium oxide nanoparticles using callus extract of Ziziphus spina-christi: characterization, antimicrobial, and antioxidant activity. Biomass. Convers. Biorefin. (2023) 13, 10133–10146
[32] A. Elbrolesy, Y. Abdou, F.A. Elhussiny, R. Morsy, Novel Green Synthesis of UV Sunscreen ZnO Nanoparticles Using Solanum Lycopersicum Fruit Extract and Evaluation of Their Antibacterial and Anticancer Activity. J. Inorg. Organomet. Polym. Mater. (2023). https://doi.org/10.1007/s10904-023-02744-3
[33] B. Radha Krishnan, M. Ramesh, M. Selvakumar, S. Karthick, A. Sasikumar, D. Varun Geerthi, N. Senthilkumar, A Facile Green Approach of Cone-like ZnO NSs Synthesized Via Jatropha gossypifolia Leaves Extract for Photocatalytic and Biological Activity. J. Inorg. Organomet. Polym. Mater. (2020) 30, 4441–4451.
[34] E.M. Petrus, S. Tinakumari, L.C. Chai, A. Ubong, R. Tunung, N.A. Elexson, Study on the minimum inhibitory concentration and minimum bactericidal concentration of Nano Colloidal Silver on food-borne pathogens. Int. Food Res. (2011) 18, 55-66.
[35] Y.D. Jin, J.P. Yang, P.L. Heremans, M. Van der Auweraer, E. Rousseau, H.J. Geise, G. Borghs, Single-layer organic light-emitting diode with 2.0% external quantum efficiency prepared by spin-coating. Chem. Phys. Lett. (2000) 320, 387–392.
[36] S.S. Rad, A.M. Sani, S. Mohseni, Biosynthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from leaf extract of Mentha pulegium (L.). Microb. Pathog. (2019) 131, 239–245.
[37] P.S. Raut, V. Thorat, R. Thakre, Green Synthesis of Zinc Oxide (ZnO) Nanoparticles Using Ocimum Tenuiflorum Leaves. Int. J. Sci. Res. (2015) 17, 1225-1228.
[38] S. Yedurkar, Ch. Maurya, P. Mahanwar, Biosynthesis of zinc oxide nanoparticles using ixora coccinea leaf extract—a green approach. Open J. Synth. Theory Appl. (2016) 5, 1-14.
[39] N. Bala, S. Saha, M. Chakraborty, M. Maiti, S. Das, R. Basub, P. Nandyc, Green synthesis of zinc oxide nanoparticles using Hibiscus subdariffa leaf extract: effect of temperature on synthesis, anti-bacterial activity and anti-diabetic activity. RSC Adv. (2015) 5, 4993-5003.
[40] G. Bhumi, N. Savithramma, Biological Synthesis of Zinc oxide Nanoparticles from Catharanthus roseus (l.) G. Don. Leaf extract and validation for antibacterial activity. Int. J. Drug Dev. Res. (2014) 6, 208-214
[41] C.D. Romero, S.F. Chopin, G. Buck, E. Martinez, M. Garcia, L. Bixby, Antibacterial properties of common herbal remedies of the southwest. J. Ethnopharmacol. (2005) 99, 253−257.
[42] H.W. Boucher, G.H. Talbot, J.S. Bradley, J.E. Edwards, D. Gilbert, L.B. Rice, M. Scheld, B. Spellberg, J. Bartlett, Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin. Infect. Dis. (2009) 48, 1−12.
[43] G.H. Talbot, J. Bradley, J.E. Edwards, D. Gilbert, M. Scheld, J.G. Bartlett, Bad bugs need drugs: an update on the development pipeline from the Antimicrobial Availability Task Force of the Infectious Diseases Society of America. Clin. Infect. Dis. (2006) 42, 657−668.
[44] S. Dwivedi, R. Wahab, F. Khan, Y.K. Mishra, J. Musarrat, A.A. Al-Khedhairy, Reactive Oxygen Species Mediated Bacterial Biofilm Inhibition via Zinc Oxide Nanoparticles and Their Statistical Determination. PLoS One (2014) 9, 1–9.
[45] Z. Obeizi, H. Benbouzid, S. Ouchenane, D. Yılmaz, M. Culha, M. Bououdina, Biosynthesis of Zinc oxide nanoparticles from essential oil of Eucalyptus globulus with antimicrobial and anti-biofilm activities. Mater. Today Commun. (2020) 25, 101553.
[46] R. Hänsch, R.R. Mendel, Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr. Opin. Plant Biol. (2009) 12, 259–266.
[47] M.M.M. Pinto, M.E. Sousa, M.S.J. Nascimento, Xanthone Derivatives: New Insights in Biological Activities. Curr. Med. Chem. (2005) 12, 2517–2538.
[48] M. Maia, D.I.S.P. Resende, F. Duraes, M.M.M. Pinto, E. Sousa, Xanthenes in Medicinal Chemistry – Synthetic strategies and biological activities. Eur. J. Med. Chem. (2021) 210, 113085.
[49] K. Reddi Mohan Naidu, B. Satheesh Krishna, M. Anil Kumar, P. Arulselvan, S. Ibrahim Khalivulla, O. Lasekan, Design, Synthesis and Antiviral Potential of 14-Aryl/Heteroaryl-14H-dibenzo[a,j]xanthenes Using an Efficient Polymer-Supported Catalyst. Molecules (2012) 17, 7543-7555.
[50] R. Giri, J.R. Goodell, C. Xing, A. Benoit, H. Kaur, H. Hiasa, D.M. Ferguson, Synthesis and cancer cell cytotoxicity of substituted xanthenes. Bioorg. Med. Chem. (2010) 18, 1456–1463.
[51] J.P. Poupelin, G. Saint-Rut, O. Fussard-Blanpin, G. Narcisse, G. Uchida-Ernouf, R. Lakroix, Synthesis and Antiinflammatory Properties of Bis(2-Hydroxy, 1-Naphthyl) Methane Derivatives. Eur. J. Med. Chem. (1978) 13, 67–71.
[52] T.S. Jin, J.S. Zhang, J.C. Xiao, A.Q. Wang, T.S. Li, Clean Synthesis of 1,8-Dioxo-octahydroxanthene Derivatives Catalyzed by p -Dodecylbenezenesulfonic Acid in Aqueous Media. Synlett (2004) 5, 866–870.
[53] X. Fan, X, Hu, X. Zhang, J. Wang, InCl3•4H2O-promoted green preparation of xanthenedione derivatives in ionic liquids. Can. J. Chem. (2005) 83, 16–20.
[54] J.J. Li, X.Y. Tao, Z.H. Zhang, An Effective Bismuth Trichloride-Catalyzed Synthesis of 1,8-Dioxo-Octahydroxanthenes. Phosphorus Sulfur Silicon Relat. Elem. (2008) 183, 1672–1678.
[55] M.T. Maghsoodlou, S.M. Habibi-Khorassani, Z. Shahkarami, N. Maleki, M. Rostamizadeh, An efficient synthesis of 2,2′-arylmethylene bis(3-hydroxy-5,5-dimethyl-2-cyclohexene-1-one) and 1,8-dioxooctahydroxanthenes using ZnO and ZnO–acetyl chloride. Chin. Chem. Lett. (2010) 21, 686–689.
[56] Z. Lasemi, E. Mehrasbi, ZnO nanoparticles: an efficient and reusable catalyst for one-pot synthesis of 1, 8-dioxo-octahydroxanthenes. Res. Chem. Intermed. (2015) 41, 2855–2866.