Theoretical study of drug delivery through drug adsorption on nanocarriers using density functional theory (DFT) method
Subject Areas :
Neda Hasanzadeh
1
*
,
Susan Zobeydi
2
1 - Department of Chemistry, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
2 - Department of Chemistry, Ahv.C., Islamic Azad University, Ahvaz, Iran
Keywords: Single-wall carbon nanotubes (SWCNTs), Hydralazine, HOMO-LUMO, density functional theory (DFT), absorption energy ,
Abstract :
This study investigates the adsorption of the drug hydralazine onto a zigzag single-walled carbon nanotube, CNT (9,0), using density functional theory (DFT) calculations at the B3LYP/6-31+G* level. Optimized structures, adsorption energies, frontier molecular orbital (HOMO–LUMO) characteristics, electronic density of states (DOS), and thermodynamic parameters were evaluated. The results indicate that hydralazine binds to the nanotube through nitrogen atoms with sp³ hybridization, producing a relatively high adsorption energy (−26.3 kcal/mol) and a reduced energy gap, both of which suggest enhanced stability. Analysis of bonding interactions, adsorption energetics, and electronic properties supports the conclusion that hydralazine adsorption on CNT (9,0) could enhance drug efficiency and enable selective cellular targeting. Therefore, CNT (9,0) shows strong potential as a nanocarrier for hydralazine in targeted drug delivery systems.
[1] Kaur, J.; Gill, G.S.; Jeet, K., Applications of carbon nanotubes in drug delivery: A comprehensive review. Characterization and biology of nanomaterials for drug delivery. 2019, 113-135 DOI: https://doi.org/10.1016/B978-0-12-814031-4.00005-2.
[2] Seko, K.; Kinoshita, J.-i.; Saito, Y., In situ transmission electron microscopy of field-emitting bundles of double-wall carbon nanotubes. Japanese journal of applied physics. 2005, 44, L743 DOI: 10.1143/JJAP.44.L743.
[3] Bikiaris, D.; Vassiliou, A.; Chrissafis, K.; Paraskevopoulos, K.; Jannakoudakis, A.; Docoslis, A., Effect of acid treated multi-walled carbon nanotubes on the mechanical, permeability, thermal properties and thermo-oxidative stability of isotactic polypropylene. Polymer Degradation and Stability. 2008, 93, 952-967 DOI: https://doi.org/10.1016/j.polymdegradstab.2008.01.033.
[4] Abbasalipourkabir, R.; Salehzadeh, A.; Abdullah, R., Cytotoxicity effect of solid lipid nanoparticles on human breast cancer cell lines. Biotechnology. 2011, 10, 528-533.
[5] Tenchov, R.; Hughes, K.J.; Ganesan, M.; Iyer, K.A.; Ralhan, K.; Lotti Diaz, L.M.; Bird, R.E.; Ivanov, J.M.; Zhou, Q.A., Transforming medicine: cutting-edge applications of nanoscale materials in drug delivery. ACS nano. 2025, 19, 4011-4038 DOI: https://doi.org/10.1021/acsnano.4c09566.
[6] Bartkowski, M.; Giordani, S., Carbon nano-onions as potential nanocarriers for drug delivery. Dalton Transactions. 2021, 50, 2300-2309.
[7] Hilder, T.A.; Hill, J.M., Modelling the encapsulation of the anticancer drug cisplatin into carbon nanotubes. Nanotechnology. 2007, 18, 275704.
[8] Liu, X.; Ying, Y.; Ping, J., Structure, synthesis, and sensing applications of single-walled carbon nanohorns. Biosensors and Bioelectronics. 2020, 167, 112495.
[9] Eskandari, P.; Abousalman-Rezvani, Z.; Roghani-Mamaqani, H.; Salami-Kalajahi, M., Polymer-functionalization of carbon nanotube by in situ conventional and controlled radical polymerizations. Advances in Colloid and Interface Science. 2021, 294, 102471.
[10] Drexler, K.E., Nanotechnology: from Feynman to funding, in Nanotechnology. Routledge, 2013, pp. 25-34.
[11] Poole, C.; Owens, F.J., Introduction to nanotechnology john wiley & sons. Inc., Hoboken, New Jersey. 2003, DOI: https://doi.org/10.1039/C2TB00085G.
[12] Hulla, J.; Sahu, S.C.; Hayes, A.W., Nanotechnology: History and future. Human & experimental toxicology. 2015, 34, 1318-1321.
[13] Xu, Z.; Wang, S.; Li, Y.; Wang, M.; Shi, P.; Huang, X., Covalent functionalization of graphene oxide with biocompatible poly (ethylene glycol) for delivery of paclitaxel. ACS applied materials & interfaces. 2014, 6, 17268-17276 DOI: https://doi.org/10.1021/am505308f.
[14] Danhier, F.; Ansorena, E.; Silva, J.M.; Coco, R.; Le Breton, A.; Préat, V., PLGA-based nanoparticles: an overview of biomedical applications. Journal of controlled release. 2012, 161, 505-522.
[15] Hassan, S.; Prakash, G.; Ozturk, A.B.; Saghazadeh, S.; Sohail, M.F.; Seo, J.; Dokmeci, M.R.; Zhang, Y.S.; Khademhosseini, A., Evolution and clinical translation of drug delivery nanomaterials. Nano today. 2017, 15, 91-106.
[16] Mu, L.; Feng, S., A novel controlled release formulation for the anticancer drug paclitaxel (Taxol®): PLGA nanoparticles containing vitamin E TPGS. Journal of controlled release. 2003, 86, 33-48.
[17] Hashemzadeh, H.; Raissi, H., The functionalization of carbon nanotubes to enhance the efficacy of the anticancer drug paclitaxel: a molecular dynamics simulation study. Journal of Molecular Modeling. 2017, 23, 222 DOI: https://doi.org/10.1007/s00894-017-3391-z.
[18] Moradi, V.; Ketabi, S.; Samadizadeh, M.; Konoz, E.; Masnabadi, N., Potentiality of carbon nanotube to encapsulate some alkylating agent anticancer drugs: a molecular simulation study. Structural Chemistry. 2021, 32, 869-877 DOI: https://doi.org/10.1007/s11224-020-01658-x.
[19] Taherpour, A.A.; Hassani Daramroudi, A.; Kariminya, R., Theoretical study of diffusion flow of anticancer medicines through single-wall armchair (10, 10) carbon nanotube. Advances in Nanochemistry. 2019, 1, 56-61 DOI: 10.22126/anc.2019.1110.
[20] Jamshidi, M.H.; Hasanzadeh, N.; Yahyaei, H.; Bahrami, A., The Study of Interaction of Melphalan with SWCNT-BNNT Through Force Fields Molecular Mechanics and Quantum Calculations in Different Solvents and Temperatures. Letters in Organic Chemistry. 2023, 20, 657-671 DOI: https://doi.org/10.2174/1570178620666230118111018.
[21] Mahdi, W.A.; Alhowyan, A.; Obaidullah, A.J., Computational study of carboplatin interaction with PEG-functionalized C60 fullerene as a drug carrier using DFT and molecular dynamics simulations. Scientific Reports. 2025, 15, 13707 DOI: https://doi.org/10.1038/s41598-025-98262-y.
[22] Alotaibi, S.H., Computational insights into the interaction of MDMA with boron-and nitrogen-doped c20 fullerenes for drug detection applications: DFT and QTAIM-based analysis. Arabian Journal of Chemistry. 2025, 18.
[23] Huwaimel, B.; Alqarni, S., A DFT investigation of the adsorption mechanism of paclitaxel on functionalized graphene oxide for enhanced drug delivery. Scientific Reports. 2025, 15, 13889 DOI: https://doi.org/10.1038/s41598-025-99156-9.
[24] Saadh, M.J.; Kaur, M.; Sharma, R.; Al-Razgan, M.; Mahrous Awwad, E.; Lutfi Ismaeel, G.; Jasim Al-Shuwaili, S.; Hussein Abbas, H.; Owayez Khawaf Aljaberi, A.S.; Fadhel Hamzah, H., The isoniazid drug adsorption on the boron carbide graphene-like monolayer: insights from simulation in the field of medicine. Molecular Physics. 2025, 123, e2357697 DOI: https://doi.org/10.1080/00268976.2024.2357697.
[25] Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G., Uranyl extraction by N, N-dialkylamide ligands studied by static and dynamic DFT simulations. Gaussian. 2009, 9, 227.
[26] Nori-Shargh, D.; Yahyaei, H.; Jafari, M.; Rafatpanah, S.; Tazekand, A.M.; Mousavi, S.N.; Shakibazadeh, R., NBO, NMR Analysis, and Hybrid DFT Study of Structural and Configurational Properties of Di-tert-butyl-, bis (trimethysilyl)-, Bis (trimethgermyl)-, and Bis (trimethylstannyl)-cyclopenta-1, 3-dienes. Phosphorus, Sulfur, and Silicon and the Related Elements. 2011, 186, 1538-1553.
[27] Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A., Gaussian 09, revision d. 01, gaussian, inc., wallingford ct. See also: URL: http://www. gaussian. com. 2009, 620.
[28] Collins, I.; Workman, P., New approaches to molecular cancer therapeutics. Nature chemical biology. 2006, 2, 689-700 DOI: https://doi.org/10.1038/nchembio840.
[29] Mackerell Jr, A.D.; Feig, M.; Brooks III, C.L., Extending the treatment of backbone energetics in protein force fields: Limitations of gas‐phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. Journal of computational chemistry. 2004, 25, 1400-1415.