Green Solvent-Free Microwave Synthesis, Spectroscopic and Computational (DFT) Characterization, and Molecular Docking of the Bis-Schiff Base Derived from Hexamethylenediamine and Benzaldehyde
Subject Areas :
1 - Ardabil branch, izlamic azad university
Keywords: Schiff base, hexamethylenediamine, Benzaldehyde, molecular docking, Density Functional Theory (DFT), green synthesis ,
Abstract :
Schiff bases are organic compounds characterized by the imine functional group (C=N) formed by condensing primary amines and carbonyl compounds. Their versatile chemical properties and broad range of applications have led to ongoing interest in their synthesis and functionality. This paper presents a green synthesis of EE-bis-Schiff base from hexamethylenediamine and benzaldehyde using solvent-free conditions and microwave irradiation, enhancing reaction efficiency while minimizing environmental impact. Characterization of the synthesized compound was conducted via FT-IR spectroscopy and CHN analysis. Furthermore, comprehensive Density Functional Theory (DFT) studies were performed at the B3LYP/6-311g(d,p) level of theory, providing insights into the molecular structure, stability, and electronic properties of EE-bis-Schiff base. Computationally molecular structure, thermodynamic stability, infrared spectrum analysis, ultraviolet-visible absorption spectrum, nuclear magnetic resonance (NMR) spectra analysis, HOMO‒LUMO energies, quantum molecular descriptors, map of electrostatic potential, and Mulliken atomic charges analysis of this Schiff base were studied. Also, molecular docking of EE-bis-Schiff base with 1AJ6, 6LU7, and 1HSG receptors was done.
[1] Vahideh Hadigheh Rezvan, Alireza Afsaneh, Green synthesis of a novel bis-Schiff base derived from 4-N, N-dimethylaminobenzaldehyde and hexamethylenediamine: DFT study, J. Mol. Struc., 2024, 1313, 5, 138744-138756. https://doi.org/10.1016/j.molstruc.2024.138744
[2] Jean-Baptiste, K., Guillaume, K., Adama, O., Claude, K., Jacques, D., Antoine, K., Nahosse, Z. Synthesis, Characterization, and Biological Evaluation of a New Series of Schiff Bases Derived from Hexamethylenediamine as Potential Antibacterial and Antifungal Agents, IRA-International J. Applied Sciences, 2017, 7(2), 69-74. doi: http://dx.doi.org/10.21013/jas.v7.n2.p3
[3] Aragón-Muriel, A., Reyes-Márquez, V., Cañavera-Buelvas, F., Parra-Unda, J.R., Cuenú-Cabezas, F., Polo-Cerón, D., Colorado-Peralta, R., Suárez-Moreno, G.V., Aguilar-Castillo, B.A., Morales‐Morales, D., Pincer Complexes Derived from Tridentate Schiff Bases for Their Use as Antimicrobial Metallopharmaceuticals, Inorganics, 2022, 10(9), 134. https://doi.org/10.3390/inorganics10090134
[4] Mohammed Abduljleel, A., Saleh Alshawi, J.M., Ali Hussein, K., Ismael, S.M., Synthesis, characterization, biological studies and DFT study of Schiff Bases and their complexes derived from aromatic diamine compounds with Cobalt (II), Bionatura, 2023, 8 (1) 61. http://dx.doi.org/10.21931/RB/2023.08.01.61
[5] Asha Fadllallah Wady1, Abdalla Gobara Habieballa2, Mohammed Awad Khalid3 and Yusuf Sulfab Ahmed, Synthesis, characterization of schiff bases derived from salicylaldehyde with some amino acids and its oxovanadium (IV) complexes via a new developed method, IOSR J. Applied Chem. (IOSR-JAC), 2022, 15 (6), 43-57. DOI: 10.9790/5736-1506014357
[6] Çelik, F., Kadriye Inan Bektas, H. İbrahim Güler, Ş. Direkel, Y. Ünver, New Schiff Bases with Thiophene Ring: Synthesis, Biological Activities, and Molecular Docking Study, Russian J. General Chem., 2023, 93, 409-417. https://api.semanticscholar.org/CorpusID:257838602
[7] Mukhtar, S., Hassan, A., Morsy, N., Hafez, T., Hassaneen, H., Saleh, F. Overview on Synthesis, Reactions, Applications, and Biological Activities of Schiff Bases, Egyptian J. Chem., 2021, 64(11), 6541-6554. doi: 10.21608/ejchem.2021.79736.3920
[8] Al-Mudhafar, May Mohammed Jawad, Tagreed N-A Omar, Shayma L. Abdulhadi. Bis-Schiff Bases of Isatin Derivatives Synthesis, and their Biological Activities: A Review, Al Mustansiriyah J. Pharmaceutical Sciences, 2022, 22(1), 23-48. https://doi.org/10.32947/ajps.v22i1.827
[9] P. Babaei, V. Hadigheh Rezvan, N. Sohrabi Gilani, S. Rostamzadeh Mansour, Molecular docking and in vitro biological studies of a Schiff base ligand as anticancer and antibacterial agents, Results in Chemistry, 2024, 7, 101517. https://doi.org/10.1016/j.rechem.2024.101517
[10] K. Srivastava, U. S. Yadav, Pragya Singh, Evaluation of antimicrobial activities of microwave-irradiation synthesized tetradentate (N2O2 donor) Schiff base and its Cu(ii) complexes, Rasayan J. Chem., 2022, 14(04), 2604-2612. DOI: 10.31788/RJC.2021.1445912
[11] Eftekhari, Samane, Naser Foroughifar, Sara Hallajian, Alireza Khajeh-Amiri, Green Synthesis of Some Novel Imidazole Schiff Base Derivatives Under Microwave Irradiation / Reflux Conditions and Evaluations of the Antibacterial Activity, Current Microwave Chem., 2020, 7(3), 207-215. DOI:10.2174/2213335607999200520124245.
[12] Ahmed A. Mahmood, Green synthesis of Schiff bases: a review study, Iraqi J. Pharmacy, 2022, 18(2)180-193. DOI: 10.33899/iphr.2022.170406
[13] Kholood A. Dahlous, Z. Almarhoon, A. El‐Faham, Microwave Irradiation Assists the Synthesis of a Novel Series of bis-Arm s-Triazine Oxy-Schiff Base and Oxybenzylidene Barbiturate Derivatives, Molecules, 2018, 23, 2976. doi:10.3390/molecules23112976
[14] V. H. Rezvan and B. Pilevar-Maleki, Structural and optical properties of some 5, 8-diaminoquinoxaline Schiff bases: quantum chemical calculations, Der Chemica Sinica. 2018, 9(1), 544-554.
[15] V. H. Rezvan, Y. Aminivand, DFT computational study of optical properties for bis-Schiff bases of 8-aminoquinoline derivatives and furan-2, 3-dicarbaldehyde, Struct. Chem., 2024, 35, 1577–1587. https://doi.org/10.1007/s11224-024-02296-3
[16] SabaGul, Faheem Jan, Aftab Alam, Abdul Shakoor, Ajmal Khan, Abdullah F. Al Asmari, Fawaz Alasmari, Momin Khan, Synthesis, molecular docking and DFT analysis of novel bis Schiff base derivatives with thiobarbituric acid for α-glucosidase inhibition assessment, Scientific Reports, 2024, 14, 3419. https://doi.org/10.1038/s41598-024-54021-z
[17] Yonas Belay, Alfred Muller, Fanikie S. Mokoena, Adedapo S. Adeyinka, Lesetja R. Motadi, Abel K. Oyebamij, 1,2,3 triazole and chiral Schiff base hybrids as potential anticancer agents: DFT, molecular docking and ADME studies, Scientific Reports, 2024, 14, 6951-6968. https://doi.org/10.1038/s41598-024-57689-5
[18] Majumdar D, Chatterjee A, Feizi-Dehnayebi M, Kiran NS, Tuzun B, Dipankar Mishra, 8-Aminoquinoline derived two Schiff base platforms: Synthesis, characterization, DFT insights, corrosion inhibitor, molecular docking, and pH-dependent antibacterial study, Heliyon, 2024, 10(15), e35591. DOI: 10.1016/j.heliyon.2024.e35591.
[19] Sibel Demir Kanmazalp, Necmi Dege, Nabajyoti Baildya, Suman Adhikari, Exploring the Supramolecular Features, Computational Studies, and Molecular Docking Studies of a Carbamate Schiff Base, Letters in Organic Chemistry, 2024, 21, 7, 568-574. DOI:10.2174/0115701786283444231128061732
[20] Samir Bondock, Tallah Albarqi, Tamer Nasr, Nada M. Mohamed, Moaz M. Abdou, Design, synthesis, cytotoxic evaluation and molecular docking of novel 1, 3, 4-thiadiazole sulfonamides with azene and coumarin moieties as carbonic anhydrase inhibitors, Arabian J. Chemistry, 2023, 16, 104956. https://doi.org/10.1016/j.arabjc.2023.104956
[21] Kangah Niameke Jean-Baptiste, Kodjo Charles Guillaume, Ouattara Zana Adama, Kablan Ahmont Landry Claude, Dibi Konan Jacques, Kouame Bosson Antoine, Ziao Nahosse, Synthesis, Characterization and Biological Evaluation of New Series of Schiff Bases Derived from Hexamethylenediamine as Potential Antibacterial and Antifungal Agents, IRA-International J. Applied Sciences, 2017, 07(02), 69-74. http://dx.doi.org/10.21013/jas.v7.n2.p3
[22] Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery, J.A., Jr.; Vreven, T.; Kudin, K.N.; Burant, J.C.; J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gom. Gaussian-03, Revision E.01; Gaussian, Inc.: Wallingford, CT, USA, 2004.
[23] Fakhr Abu-AwwadPeter Politzer, Variation of Parameters in Becke-3 Hybrid Exchange-Correlation Functional, J. Computational Chem., 2000, 21(3), 227-238. DOI: 10.1002/(SICI)1096-987X(200002)21
[24] Arbuznikov, A.V. Hybrid exchange correlation functionals and potentials: Concept elaboration, J. Struct. Chem., 2007, 48 (Suppl 1), S1–S31. https://doi.org/10.1007/s10947-007-0147-0
[25] Peter M.W. Gill, Benny G. Johnson, John A. Pople, Michael J. Frisch, The performance of the Becke—Lee—Yang—Parr (B—LYP) density functional theory with various basis sets, Chemical Physics Letters, 1992, 197(4–5), 499-505. https://doi.org/10.1016/0009-2614(92)85807-M
[26] Montgomery Gray, Paige E. Bowling, John M. Herbert, Comment on “Benchmarking Basis Sets for Density Functional Theory Thermochemistry Calculations: Why Unpolarized Basis Sets and the Polarized 6-311G Family Should Be Avoided, J. Phys. Chem. A, 2024, 128, 36, 7739–7745. https://doi.org/10.1021/acs.jpca.4c00283
[27] Dennington, R., Keith, T.A., Millam, J.M., "GaussView, Version 6.1", Semichem. Inc. vol. (2016).
[28] Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, AutoDock 4 and AutoDockTools 4: Automated docking with selective receptor flexibility, J Comput. Chem., 2009, 30, 2785-2791. https://doi.org/10.1002/jcc.21256
[29] Baugh EH, Lyskov S, Weitzner BD, Gray JJ Real-Time PyMOL Visualization for Rosetta and PyRosetta. PLOS ONE 2011, 6(8) e21931. https://doi.org/10.1371/journal.pone.002193
[30] Bob Schiffrin, Sheena E. Radford, David J. Brockwell, Antonio N. Calabrese, PyXlinkViewer: A flexible tool for visualization of protein chemical crosslinking data within the PyMOL molecular graphics system, Protein Science: A Publication of the Protein Society, 2020, 29, 1851-1857. https://doi.org/10.1002/pro.3902
[31] Khoirul Faqih, Yahmin, Suharti, Skrining Turunan Flavonoid Sebagai Kandidat Inhibitor Protease nsP2 dari Virus Chikungunya Menggunakan Molecular Docking. JC-T (Journal Cis-Trans): Jurnal Kimia dan Terapannya, 2019, 3(1), 34-44. DOI: 10.17977/um0260v3i12019p034
[32] Elkaeed EB, Eissa IH, Elkady H, Abdelalim A, Alqaisi AM, Alsfouk AA, Elwan A, Metwaly AM. A Multistage In Silico Study of Natural Potential Inhibitors Targeting SARS-CoV-2 Main Protease. International Journal of Molecular Sciences. 2022; 23(15), 8407. https://doi.org/10.3390/ijms23158407
[33] Mario S. Valdés-Tresanco, Mario E. Valdés-Tresanco, Pedro A. Valiente, Ernesto Moreno, AMDock: a versatile graphical tool for assisting molecular docking with Autodock Vina and Autodock4, Biology Direct, 2020, 15:12, 1-12. https://doi.org/10.1186/s13062-020-00267-2
[34] Roman Aleksander Laskowski, Mark B Swindells, LigPlot+: Multiple Ligand–Protein Interaction Diagrams for Drug Discovery, J. Chemical Information and Modeling, 2011, 51(10):2778-2786. DOI:10.1021/ci200227u
[35] Mohammed Farman, Atallah burjes Dakeel, N. Tapabashi, Photochemical Stability, Chemical Kinetics, and Electrical Characterization Studies as well as Some Theoretical Studies of Some Cyclic Hydrazones, Farman, Mohammed Photochemical Stability, Chemical Kinetics, and Electrical Characterization Studies as well as Some Theoretical Studies of Some Cyclic Hydrazones, J. Information Systems Engineering and Management, 2025, 10(32s), 2468-4376. DOI:10.52783/jisem.v10i32s.5308
[36] Muhammad Nawaz Tahir, Muhammad Ashfaq, Khurram Shahzad Munawar, Ahsan Ullah Khan, Muhammad Adnan Asghar, Tansir Ahamad, Suvash Chandra Ojha, Synthesis, Characterizations, Hirshfeld Surface Analysis, DFT, and NLO Study of a Schiff Base Derived from Trifluoromethyl Amine, ACS Omega, 2024, 9, 2, 2325–2338. https://doi.org/10.1021/acsomega.3c05199
[37] Al-Hawarin JI, Abu-Yamin A-A, Abu-Saleh AA-AA, Saraireh IAM, Almatarneh MH, Hasan M, Atrooz OM, Al-Douri Y. Synthesis, Characterization, and DFT Calculations of a New Sulfamethoxazole Schiff Base and Its Metal Complexes. Materials, 2023, 16(14), 5160. https://doi.org/10.3390/ma16145160
[38] Sıdır, I.; Gülseven Sıdır, Y.; Góbi, S.; Berber, H.; Fausto, R., Structural Relevance of Intramolecular H-Bonding in Ortho-Hydroxyaryl Schiff Bases: The Case of 3-(5-bromo-2-hydroxybenzylideneamino) Phenol, Molecules, 2021, 26, 2814. https:// doi.org/10.3390/molecules26092814 CQC.
[39] Dehno Khalaji, A., Hafez Goran, S., Mehrani, S., Fejfarova, K., Dusek, M., New 16-membered macrocyclic Schiff base: Synthesis, structural and FT-IR studies, Iran. Chem. Commun., 2017, 5, 186-194.
[40] Beyramabadi, S.A., Javan-Khoshkholgh, M., Ostad, N.J., Spectroscopic (Ft-Ir, Nmr, Uv-Vis, Fluorescence) and Dft Studies (Molecular Structure, Ir and Nmr Spectral Assignments, Nbo and Fukui Function) of Schiff Bases Derived from 2-Chloro-3-Quinolinecarboxaldehyde, J. Struct. Chem., 2018, 59, 1342–1352. https://doi.org/10.1134/S0022476618060136
[41] Singhal S, Khanna P, Khanna L. Synthesis, DFT studies, molecular docking, antimicrobial screening and UV fluorescence studies on ct-DNA for novel Schiff bases of 2-(1-aminobenzyl) benzimidazole, Heliyon, 2019, 5(10), e02596. doi: 10.1016/j.heliyon.2019.e02596.
[42] E. Olalekan, Eric O. Akintemi, Bernardus Van Brecht, Gareth M. Watkins, synthesis, characterization, and DFT studies of Schiff bases of p-methoxysalicylaldehyde Temitope, Bull. Chem. Soc. Ethiop., 2023, 37(3), 675-688. DOI: https://dx.doi.org/10.4314/bcse.v37i3.11
[43] Venkatesh, P. Vennila, Synthesis, Characterization, Biological Activity and DFT Calculations of Schiff Base Ligand and Metal Complex, Eurasian J. Sci. Technol., 2024, 4(4), 5669. https://doi.org/10.48309/ejst.2025.462773.1156
[44] Valeria Butera, Luisa D’Anna, Simona Rubino, Riccardo Bonsignore, Angelo Spinello, Alessio Terenzi, Giampaolo Barone, How the Metal Ion Affects the 1H NMR Chemical Shift Values of Schiff Base Metal Complexes: Rationalization by DFT Calculations, J. Phys. Chem. A, 2023, 127, 44, 9283–9290. https://doi.org/10.1021/acs.jpca.3c05653
[45] Mou-cui Li, Ying-Hui ren, Yu-Ying Han, Yang-Ming Dong, Shao-Jie Wu, Wen-Hui Zhang, Le Qi, Yi-Ming Lu, Hai-Xia Ma, Novel Pyrimidine-Triazole Schiff Bases: Synthesis, Antifungal Activities, DFT and Molecular Docking, Rev. Chim., 2021, 72 (4), 65-74. https://doi.org/10.37358/RC.21.4.8457
[46] Saba Gul, Faheem Jan, Aftab Alam, Abdul Shakoor, Ajmal Khan, Abdullah F. AlAsmari, Fawaz Alasmari, Momin Khan & Li Bo, Synthesis, molecular docking and DFT analysis of novel bis-Schiff base derivatives with thiobarbituric acid for α-glucosidase inhibition assessment, Sci Rep., 2024, 14, 3419. https://doi.org/10.1038/s41598-024-54021-z
[47] Fatmah M. Alkhatib, Hajar Mubashir Alsulami Synthesis, characterization, DFT calculations and biological activity of new Schiff base complexes, Heliyon, 2023, 9, e18988. https://doi.org/10.1016/j.heliyon.2023.e18988
[48] Vahideh Hadigheh Rezvan, Samaneh Barani Pour, Jaber Jahanbin Sardroodi, Molecular structures and optical properties of Schiff bases derived from pyrrole alkyl ketones and 1-aminophethalazine: DFT calculations, Results in Chemistry, 2024, 12, 101907. https://doi.org/10.1016/j.rechem.2024.101907
[49] Dhelal Ayad Shaker, Haider Abbas Mahdi, Synthesis and Spectral Identification of Some New Schiff Base Compounds: A HOMO-LUMO Study of Frontier Molecular Orbitals, Advanced J. Chemistry, Section A, 2025, 8(5), 835-844. DOI: 10.48309/AJCA.2025.476161.1663A
[50] Yusuf, Tunde L., Akintemi, Eric O., Olagboye, Sulaimon, Tolufashe, Gideon F., 12 Investigating the biological actions of some Schiff bases using density functional theory study, Computational Chemistry: Applications and New Technologies, edited by Ponnadurai Ramasami, Berlin, Boston: De Gruyter, 2021, 219-232. https://doi.org/10.1515/9783110682045-012
[51] Vinay Jaiswal, Rashmi B. Rastogi, Jiya L. Maurya, Praveen Singh, Ashish K. Tewari, Quantum Chemical Calculation studies for interactions of antiwear lubricant additives with metal surface, RSC Advances, 2014, 4, 13438-13445. DOI: 10.1039/C3RA45806G
[52] Anouar EH. A Quantum Chemical and Statistical Study of Phenolic Schiff Bases with Antioxidant Activity against DPPH Free Radical, Antioxidants, 2014, 3(2), 309-322. https://doi.org/10.3390/antiox3020309
[53] N Dineshkumar, Muthuvel Inbasekaran, Ganesamoorthy Thirunarayanan, Synthesis, spectral, crystal, computational studies and antimicrobial activities of (E)-N-(substituted arylidene)-3-(trifluoromethyl)anilines, Indian J. Chemistry, 2023, 62, 906-920. DOI: 10.56042/ijc.v62i9.769 Lab:
[54] Preethi V, Vijukumar VG, AnilaRaj S, Vidya VG. Synthesis, characterization, DFT studies and evaluation of the potential anti-tumour activity of nicotinic hydrazide based Schiff base using in vitro and molecular docking techniques, Heliyon, 2024, 10(9), e29689. doi: 10.1016/j.heliyon.2024.e29689.
[55] Ali J. A. Al-Sarray, Molecular and electronic properties of Schiff bases derived from different aniline derivatives: density functional theory study, J. Med. Pharm. Chem. Res., 2023, 5, 4, 317-326. DOI: 10.22034/ecc.2023.374322.1565
[56] Soohyung Park, Junkyeong Jeong, Gyeongho Hyun, Minju Kim, Hyunbok Lee, Yeonjin Y, The origin of high PCE in PTB7 based photovoltaics: proper charge neutrality level and free energy of charge separation at PTB7/PC71BM interface, Sci. Rep., 2016, 6, 35262. https://doi.org/10.1038/srep35262
[57] Ayaz M, Alam A, Zainab, Elhenawy AA, Ur Rehman N, Ur Rahman S, Ali M, Latif A, Al-Harrasi A, Ahmad M., Designing and Synthesis of Novel Fexofenadine-Derived Hydrazone-Schiff Bases as Potential Urease Inhibitors: In-Vitro, Molecular Docking and DFT Investigations, Chem. Biodivers., 2024; 21(8), e202400704. doi: 10.1002/cbdv.202400704.
[58] V. Tamilselvi, M. Arivazhagan, Munusamy Thirumavalavan, Kalpana Sugumar, S. Manivel, N. Elangovan, Natarajan Arumugam, R. Padmanaban, Synthesis, spectral, DFT, topology, NCI and molecular docking studies of (1E,1′E)-N, N'-(sulfonylbis(4,1-phenylene))bis(1-(4-bromophenyl)methanimine), J. Molecular Structure, 2024, 1315, 5, 138808. https://doi.org/10.1016/j.molstruc.2024.138808
[59] Minhazul Abedin, Tarun Kumar Pal, Md Chanmiya Sheikh, Md Ashraful Alam, Investigation on synthesized sulfonamide Schiff base with DFT approaches and in silico pharmacokinetic studies: Topological, NBO, and NLO analyses, Heliyon, 2024, 10, 14, e34499. https://doi.org/10.1016/j.heliyon.2024.e34499
[60] Al-Anood M. Al-Dies, Fawzia F. Alblewi, Rawda M. Okasha, Mosa H. Alsehli, Rita M. A. Borik, Saleh Ihmaid, Abd El-Galil E. Amr, Hazem A. Ghabbour, Ahmed A. Elhenawy & Ahmed M. El-Agrody, Synthesis, crystal structure, Hirshfeld study, DFT analysis, molecular docking study, antimicrobial activity of β-enaminonitrile bearing 1H-pyran, Discov. Appl. Sci., 2025, 7, 71. https://doi.org/10.1007/s42452-024-06254-w
[61] Thamer Alorini, Ismail Daoud, Ahmed N. Al-Hakimi, Fahad Alminderej, Synthesis, characterization, anticancer activity, and molecular docking study of some metal complexes with a new Schiff base ligand, J. Molecular Structure, 2023, 1276, 134785. https://doi.org/10.1016/j.molstruc.2022.134785
[62] Gurjaspreet Singh, Sudha Malik, Sofia Gupta, Harshbir Kaur, Anurag Dalal, Sumesh Khurana, Jyoti, Komal, Amarjit Kaur, Synthesis, structural characterization, and potential antifungal activity of Schiff base probes: A molecular docking study, J. Molecular Structure, 2025, 1337, 142136. https://doi.org/10.1016/j.molstruc.2025.142136
[63] Muhammad Wajid, Muhammad Uzair, Gulzar Muhammad, Farhan Siddique, Adnan Ashraf, Sajjad Ahmad, Abdullah F. Alasmari, Biological Activities, DFT and Molecular Docking Studies of Novel Schiff Bases Derived from Sulfamethoxypyridazine, ChemistrySelect, 2024, 9(15), e202400675. https://doi.org/10.1002/slct.202400675
[64] Feyzi Sinan Tokalı, Parham Taslimi, Hande Usanmaz, Muhammet Karaman, Kıvılcım Şendil, Synthesis, characterization, biological activity, and molecular docking studies of novel Schiff bases derived from thiosemicarbazide: Biochemical and computational approach, J. Molecular Structure, 2021, 1231, 129666. https://doi.org/10.1016/j.molstruc.2020.129666
[65] El-Gammal OA, Mohamed FSh, Rezk GN, El-Bindary AA., Structural characterization and biological activity of new metal complexes based on Schiff base, J. Mol. Liq., 2021, 330, 115522. https://doi.org/10.1016/j.molliq.2021.115522
[66] Krishnankutty K, Sayudevi P, Ummathur MB, Metal complexes of Schiff bases derived from dicinnamoylmethane and aromatic amines, J. Serb. Chem. Soc., 2008, 73(4), 423–429. DOI: 10.2298/JSC0804423K