The effect of teaching based on the open-ended problem posing, on the mathematical creativity of the tenth-grade students of gifted students
Subject Areas : Creativity and innovation from psychological, epistemological, educational and pedagogical
Majid Yousefi
1
,
Ebrahim Reyhani
2
*
,
محمد حسن بهزادی
3
1 - Islamic Azad University Science and Research Branch
2 - Associate Professor in Mathematics EducationFaculty member at Shahid Rajaee Teacher Training University, Tehran, Iran
3 - عضو هیات علمی دانشگاه آزاد اسلامی
Keywords: Mathematical creativity, tenth-grade grade students, problem posing, open-ended problem.,
Abstract :
The main purpose of this research is to investigate the effect of teaching based on the open-ended problem posing, on the mathematical creativity of the tenth-grade gifted students in structured situations. The method of this study was the survey method. The available sample of the present study was 33 students of the 10th grade of gifted students in Varamin, Qarchak and Pakdasht cities in the southeast of Tehran province in the academic year of 2020-2021, who were selected by purposeful and random sampling. To collect the data of the current research, a researcher-made test was used, including two questions of answering the problem in structured situations (Stoyanova and Allerton). The validity of the test was confirmed by mathematics education professors and experienced mathematics teachers. The Cronbach's alpha coefficient of the test questions was calculated as 0.83 and 0.90, which indicated a good situation regarding the reliability of the test. After holding two introduction sessions of "problem posing process" and " open-ended problems", and holding seven training sessions of " open-ended problem posing ", based on the six innovation ideas in Vistro-U's problem posing (2009), the test was conducted in structured situations. The results showed that the mathematical creativity score of the students under the mentioned training has been accompanied by a significant increase.
بروجردی، مینا؛ اسدزاده، حسن؛ حجازی، مسعود؛ انتصار فومنی، غلامحسین. (1399). تأثیر موسیقی و نقاشی در افزایش خلاقیت و کاهش پرخاشگری کودکان پیشدبستانی شهر همدان. فصلنامه علمی پژوهشی ابتکار و خلاقیت در علوم انسانی، 10 (1)، 1- 36.
حقجو، سعید و ریحانی، ابراهیم. (1400). فراتحلیل کیفی چارچوبهای ارزیابی مهارتهای حل مسئلهی ریاضی. فصلنامه پژوهش در یادگیری آموزشگاهی و مجازی، 9 (3)، 9- 28.
ریحانی، ابراهیم و حقجو، سعید. (1399). حل مسئله ریاضی، از نظریه تا عمل (چاپ اول). تهران: انتشارات دانشگاه تربیت دبیر شهید رجایی.
سعیدی، الهه؛ پیرخائفی، علیرضا. (1399). مقایسه خلاقیت و حافظه دانشآموزان دارا و بدون ناتوانی یادگیری ریاضی. فصلنامه پژوهش در یادگیری آموزشگاهی و مجازی، 7 (4)، 21- 30.
سلیمیان ریزی، فاطمه (1393). «بررسی رویکرد آموزش ریاضی»، دانشگاه تربیت دبیر شهید رجایی، دانشکده علوم پایه، تهران.
فلاح نسیمی، محمد؛ ریحانی، ابراهیم؛ اسلامپور، محمدجواد. (1400). جست و جوی عناصر اصلی خلاقیت در عملکرد معلمان دوره ابتدایی در فرایند طرح مسئله. مجله پژوهش در آموزش ریاضی، 2 (1)، 41- 62.
قاضی زاده فرد، مرجان السادات؛ ابوالمعالی، خدیجه؛ صابری، هایده؛ ابراهیمی مقدم، حسین (1402). طراحی و اعتبارسنجی برنامه آموزشی خلاقیت برای کودکان پیش دبستانی. فصلنامه علمی پژوهشی ابتکار و خلاقیت در علوم انسانی، 12(4)، 101- 122.
یوسفی، مجید؛ ریحانی، ابراهیم؛ بهزادی، محمدحسین. (1401). بررسی خلاقیت ریاضی دانشآموزان پایهی دهم با استفاده از طرح مسألهی بازپاسخ در موقعیتهای ساختاریافته. فصلنامه علمی پژوهشی ابتکار و خلاقیت در علوم انسانی، 12(3)، 219- 260.
Amado, N., Carreira, S., & Jones, K. (Eds.). (2018). broadening the scope of research on mathematical problem solving: A focus on technology, creativity and affect. Springer.
Becker, J. P., & Shimada, S. (1997). The open-ended approach: A New proposal for teaching Mathematics. Reston, VA: National Council of Teachers of Mathematics.
Bicer, A., Lee, y., Perihan, C., Capraro, M., & Capraro, R. (2020). Considering mathematical creative self-efficacy with problem posing as a measure of mathematical creativity. Educational Studies in Mathematics.
Bicer, A., Marquez, A., colin dres, K.V.M., Schanke, A.A., Castellon, L.B., Audette, L.M., Perihan,C., & Lee, Y.(2021). Investigating creativity-directed tasks in middle school mathematics curricula. Thinking Skins and Creativity, 40, Article 100823.
Bonotto, C., & Dal Santo, L. (2015). On the Relationship Between Problem Posing, Problem Solving, and Creativity in the Primary School. In F.M. Singer, N. Ellerton, & J. Cai (Eds.), Mathematical Problem Posing. From research to effective Practice (pp. 103-123). Springer.
Briggs, M., & Davis, S. (2008). Creative Teaching Mathematics in the Early Years and Primary Classrooms. New York: Madison Ave.
Cai,J., Hwang,C., & Silber,S. (2015). Problem-Posing research in mathematics education: some answered and unanswered questions. In Mathematical Problem Posing (pp. 3-34). Springer, New York,NY
. Cai, W., Khapova, S., Bossink, B., Lysova, E., & yuan, J. (2020). Optimizing employee creativity in the digital era: Uncovering the interactional effects of abilities, motivations, and opportunities. International Journal of environmental research and public health, 17 (3), 10-38.
Chamberlin, S. A., & Moon, S. M. (2005). Model-eliciting activities as tool to develop and identify creativity gifted mathematicians. Journal of Secondary Gifted Edcuation, 17(1), 37-47.
Chen,L., Van Dooren,W., Chen,Q., & Verschaffel, L.(2007). The relationship between posing and solving arithmetic word problems among Chinese elementary school children. Resrarch in Mathematical Education, 11(1), 1-31.
Cifarelli, V., & Cai, J. (2005). The evolution of mathematical explorations in open-ended Problem-solving situations. In paper presented at the annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education. Roanoke, VA: Virginia Tech University Center.
Damayanti, H. T., & Sumardi, S. (2018). Mathematical Creative Thinking Ability of Junior High School Student in Solving Open-Ended Problem. JRAMathEdu (Journal of Research and Advances in Mathematics Education), 3(1), 36-45.
Glaveanu, V.P. (2018). Educating which creativity? Thinking Skills and Creativity, 27, 25-32.
Guilford, J. P. (1959). Traits of Creativity. In H. H. Anderson (Ed.), Creativity and its Cultivation New York: Harper & Brothers Publishers, 142-161. Guilford, J.P. (1967). The nature of human intelligence. New York: MCGraw Hill.
Hetzroni, O., Agada, H., & Leikin, M. (2019). Creativity in autism: an examination of general an mathematical creative thinking among children with autism spectrum disorder and children with typical development. Journal of autism and development disorders, 49 (9), 3833-3844.
Jensen, L. R. (1973). The Relationships Among Mathematical Creativity, Numerical Aptitude, and Mathematical Achievement. Journal of Creative Behavior, 25(2), 154-161.
Kattou, M., Kontoyianni, K., Pitta-Pantazi, D., & Christou, C. (2012). Connecting Mathematical Creativity to Mathematical ability, ZDM, 45(2), 167-181.
Kattou, M., Christou, C., & Pitta-Pantazi, D. (2015). Mathematical creativity or general creativity? In Ninth Congress of the European Society for Research in Mathematical Education (pp. 1016-1023). Prague, Czech Rpublie.
Kilpatick, J. (1987). Problem formulating: Where do good problems Come frome? In: A.H. Schoenfeld (Ed.), Cognitive Science and Mathematics Education (pp. 123-147). Hillsdale, NJ: Lawrence Erlbaum.
Koichu, B., & Kontorovich, I. (2013). Dissecting Success Stories on Mathematical Problem Posing: a case of the Billiard Task. Educational Studies in Mathematics, 83, 71-86.
Kwon, O. N., Park, J. H., & Park, J. S. (2006). Cultivating divergent thinking in mathmatics through an open-ended approach. Asia Pacific Education Review, 7(1), 51-61.
Leikin, R., & Sriraman, B. (Eds). (2016). Creativity and giftedness: Interdisciplinary perspectives from mathematics and beyond (pp.1-3). Springer.
Leikin, R., & Elgrably, H. (2019). Problem through investigations for the development and evaluation of proof-related skills and creativity skills of prospective high school mathematics teachers. International Journal of Educational Research.
Leikin, R., & Elgrably, H., (2022). Strategy creativity and outcome creativity when solving open tasks: focusing on problem posing through investigations. ZSM-Mathematics Education 54, 35-49.
Leung, S. K. S. (1997). On the role of creative thinking in problem posing. ZDM, 29(3), 81-85.
Lurai, S. R., Sriraman, B., & Kaufman, J.C. (2017). Enhancing equity in the classroom by teaching for mathematical creativity. ZDM, 49, 1033-1039. https:// doi.org / 10.1007/ s11858-017-0892-2.
Murni. (2013). Open ended approach in learning to improve students thinking skill in Banda Aceh. International Journal of Independent Research and Studies, 2(2), 95-101.
NCTM. (2000). Principles and Standards for School Mathematics. Reston, VA: The National Council of Teacher of Mathematics, Inc.
OECD. (2019). Framework for the assessment of creative thinking in PISA 2021. Accessed Nov 2020. https: // www. oecd.org/pisa/publications/PISA-2021-ceative-thinking-framework.pdf
Otgonbaatar, K. (2020). Examining Mathematical Creativity Among Mongolian Ninth-Grade Students Using Problem-Posing Approach. Journal of Education and Practice, 11 (27), 69-75.
Pehkonen, E. (2007). Problem Solving in mathematics education in Finland. WG2, Topic, 8,9.
Poincaré, H. (1948). Scince and method. New York: Dover.
Poincaré, H. (1956): Mathematical Creation. In: J. R. Newman (ed.): The world of mathematics, V4, New York: Simon and Schuster, pp. 2041-2050.
Sanchez, A., Font, V., & Breda, A. (2021). Significance of creativity and its development in mathematics classes for preservice teachers who are not trained to develop students' creativity. Mathematics Education Research Journal. https:// doi.org / 1007 / S13394-021-00367-w.
Silver, E. (1997). Fostering creativity through instruction rich in mathematical problem solving and problem posing, Zentralblatt Fur Didaktik der Mathematic, 29 (3), 75-80.
Sriraman, B. (2005). Are giftedness & creativity synonyms in mathematics? An analysis of constructs within the professional and school realms. The Journal of Secondary Gifted Edcuation, 17, 20-36.
Stoyanova, E., & Ellerton, N. F. (1996). A framework for research into students’ problem posing. P. Clarkson (Ed.), Technology in Mathematics Education (pp.518-525). Melbourn: Mathematics Education Research Group of Australasia.
Suherman. (2013). Kiat Pendidikan Mathematika di Indonesia: Konstatasi Keadaan Masa Kini Menuju Harapan Masa Depan. Jakarta: Direktorat Jenderal Pendidikan Tinggi, Departemen Pendidikan Nasional.
Sullivan, M. (2011). Precalculus. Ninth edition, Pearson Education. Tjoe, H. (2019). Looking Back to Solve Differently: Familiarity, Fluency, and Flexibility. In Mathematical Problem Solving (PP. 3-20). Springer, Cham.
Torrance, E. P. (1966). Torrance Test of creative Thinking: Norms technical manual, Princeton, NJ: Personnel Press.
Torrance, E. P. (1974). Norms technical manual: Torrance Tests of Creative Thinking. Lexington, Mass: Ginn and Co.
Torrance, E. P. (1988). The nature of creativity as manifest in its testing, In R.J. Sternberg (Ed.), The nature of creativity: Contemporary psychological perspectives (PP. 43-75). New York: Cambridge University Press
. Vistro – yu, C.P. (2009). Using innovation techniques to generate new problems. In Mathematical Problem Solving: Yearbook 2009, association of mathematics educators, PP. 185-207.
Wardani, S. B., Sumarmo, U., & Nishitoni, I. (2011). Mathematical Creativity and Disposition: Experiment with grade-10 students using silver inquiry approach.
Yuan, X., & Sriraman, B. (2011). An exploratory study of relationships between students’ creativity and mathematical problem posing abilities: comparing chines and u.s. students. In B. Sriraman, K. Lee (Eds.), The Elements of Creativity and Giftedness (pp. 5-28). Rotterdom, Netherlands: Sense Publisher.