Reducing environmental pollution by converting organic wastes to hydrochar and it’s using in the soil
Subject Areas :
Environmental pollutions (water, soil and air)
Yaser Azimzadeh
1
*
,
Nosratollah Najafi
2
1 - Ph.D., Student of Soil Science, Faculty of Agriculture, Tabriz University, Tabriz, Iran
2 - Associate Professor, Department of Soil Science, College of Agriculture, Tabriz University
Received: 2016-08-24
Accepted : 2018-07-30
Published : 2021-03-21
Keywords:
Carbon sequestration,
Hydrochar,
global warming,
Climate warming,
Soil pollution,
Abstract :
Environmental pollution with various organic and inorganic contaminants, pathogens, poisons, and pesticides and global warming are the most important environmental issues for the mankind. Converting of biomasses into hydrochar is a novel technology that has attracted great attention of researchers in recent decade due to its potential in reducing environmental pollution. Hydrochar is a persistent porous carbon, derived from hydrothermal carbonization (HTC) of biomass at 160-250 oC and 15-25 bar. The products of the HTC process are three sterile phases including of solid (hydrochar), liquid (process solution), and gaseous. Adding hydrochar to soils has been described as a means of sequestering atmospheric carbon dioxide, and also mitigating greenhouse gasses such as nitrogen oxide and methane emissions. Hydrochar increases water retention capacity of soil and soil infiltration by improving soil physical properties and reduces nutrient leaching and losing by nutrients retention in soil and reducing soil erosion. In addition, hydrochar has a great surface area and functional groups and can be used as an adsorbent of various pollutants specially heavy metals from water, waste water, and sewage sludge. Nonetheless, there are very few studies on the characterization and environmental aspects of this valuable material and its production technology. Unfortunately, there is no investigation on this field in Iran.
References:
Lehmann, J. and Joseph, S. 2009. Biochar for Environmental Management: Science and Technology. Earth scan, London & Sterling, VA. 416p.
Uchimiya, M., Chang, S., Klasson, K.T. 2011. Screening biochars for heavy metal retention in soil: role of oxygen functional groups. Journal of Hazardous Materials. 190, pp. 432–441.
Yoshimura, M., and Byrappa, K. 2008. Hydrothermal processing of materials: past, present and future. Journal of Material Science, 48, pp. 2085-2103.
Gronwald, M., Don, A., Tiemeyer, B., and Helfrich, M. 2015. Effects of fresh and aged chars from pyrolysis and hydrothermal carbonization on nutrient sorption in agricultural soils. Soil, Vol. 1, pp. 475–489.
Gajic, A., and Koch, H.J. 2012. Sugar beet (Beta vulgaris) growth reduction caused by hydrochar is related to nitrogen supply. Journal of Environmental Quality, Vol. 41, pp. 1067-1075.
Libra, J.A., Ro, K.S., Kammann, C., Funke, A., Berge, N.D., Neubauer, Y., Titirici, M., Fühner, C., Bens, O., Kern, J., Emmerich, K.H. 2011. Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Advanced Biofuels, Vol. 2, pp. 89-24.
Yakaboylu, O., Harinck, J., Smit, K.G., de Jong, W. 2013. Supercritical water gasification of manure: A thermodynamic equilibrium modeling approach. Biomass Bioenergy, Vol. 59, pp. 253–263.
Castello, D., Kruse, A, Fiori, L. 2014. Supercritical water gasification of hydrochar, Chemical Engineering Research and Design http://dx.doi.org/10.1016/j.
Castello, D., Fiori, L. 2011. Supercritical water gasification of biomass: Thermodynamic constraints. Bioresearch Technology, Vol. 102, pp. 7574-7582.
Kruse, A., Funke, A., Titirici, M.M. 2013. Hydrothermal conversion of biomass to fuels and energetic materials. Current Opinion in Chemical Biology, Vol. 17, pp. 515–521.
Fang, J., Gao, B., Chen, J., Zimmerman, R. 2015. Hydrochars derived from plant biomass under various conditions: Characterization and potential applications and impacts. Chemical Engineering Journal, Vol. 267, pp. 253–259.
Cui, X., Antonietti, M., Yu, S.H. 2006.Structural effects of iron oxide nanoparticles and iron ions on the hydrothermal carbonization of starch and rice carbohydrates. Small, Vol. 2, pp. 756–759.
Sun, Y., Gao, B., Yao, Y., Fang, J., Zhang, M., Zhou, Y., Chen, H., Yang, L. 2014. Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties. Chemical Engineering Journal, Vol. 240, pp. 574–578
Guiotoku, M., Hansel, F.A., Novotny, E.H., de Freitas Maia, C.M.B. 2012. Molecular and morphological characterization of hydrochar produced by microwave‑assisted hydrothermal carbonization of cellulose. Pesquisa Agropecuaria Brasileira, Vol. 47(5), pp. 687-692.
Titirici, M.M., Antonietti, M. 2010. Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization. Chemical Society Review, Vol. 39, pp.103-116.
Davda, R.R., Shabaker, J.W., Huber, G.W., Cortright, R.D., Dumesic, J.A. 2005. A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts. Applied Catalysis, Vol. 56, pp. 171–186.
Akhtar, J., Amin, N.A.S. 2011. A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass. Renewable and Sustainable Energy Reviews, Vol. 15, pp. 1615–1624.
Hu, B., Wang, K., Wu, L., Yu, S.H., Antonietti, M., Titirici, M.M. 2010. Engineering carbon materials from the hydrothermal carbonization process of biomass. Advanced Materials, Vol. 22, pp. 813–828.
Jin, F., Enomoto, H. 2009. Hydrothermal conversion of biomass into value added products: technology that mimics nature. Bioresources, Vol. 4, pp. 704–713.
Laird, D., Fleming, P., Wang, B., Horton, R., Karlen, D. 2010. Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma, 158(3-4), pp. 436-442.
Liu, Z., Quek, A., Parshetti, G., Jain, A., Srinivasan, M.P., Hoekman, S.K., Balasubramanian, R. 2013. A study of nitrogen conversion and polycyclic aromatic hydrocarbon (PAH) emissions during hydrochar–lignite co-pyrolysis. Applied Energy, Vol. 108, pp. 74–81.
Basso, D., Ragazzi, M., Rada, E.C., Fiori, L. 2014. Release of PCDD/Fs during a hydrothermal carbonization process of organic waste residues. U.P.B. Sci. Bull., Series D, Vol. 76(2), pp. 199-212.
Liu, Z., Quek, A., Balasubramanian, R. 2014. Preparation and characterization of fuel pellets from woody biomass, agro-residues and their corresponding hydrochars. Applied Energy, Vol. 113, pp. 1315–1322.
Sun, K., Ro, K., Guo, M.X., Novak, J., Mashayekhi, H., Xing, B.S. 2011. Sorption ofbisphenol a, 17 alpha-ethinyl estradiol and phenanthrene on thermally andhydrothermally produced biochars. Bioresource Technology, Vol. 102, pp. 5757–5763.
Wigmans, T. 1989. Industrial aspects of production and use of activated carbon, Carbon, Vol. 27(1), pp. 13-22.
Xue, Y., Gao, B., Yao, Y., Inyang, M., Zhang, M., Zimmerman, A.R., Ro, K.S. 2012. Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: Batch and column tests. Chemical Engineering Journal, Vol. 200–202, pp. 673–680.
Bustamante, M.A., Alburquerque, J.A., Restrepo, A.P., De La Fuente, C., Paredes, C., Moral, R., Bernal, P. 2012. Co-composting of the solid fraction of anaerobic digestates, to obtain added value materials for use in agriculture. Biomass and Energy, Vol. 43, pp. 26-65.
Holm-Nielsen, J.B., Al Seadi, T., Oleskowicz-Popiel, P. 2009. The future of anaerobic digestion and biogas utilization. Bioresource Technology, Vol. 100(22), pp. 5478-5484.
Monaco, S., Sacco, D., Pelisetti, S., Dinuccio, E., Balsari, P., Rostami, M., Grignani, C. 2011. Laboratory assessment of ammonia emissions after soil application of treated and untreated manures. Journal of Agricultural Science, pp.1-9.
Dicke, C., Lanza, G., Mumme, J., Ellerbrock, R., Kern, J. 2014. Effect of HTC-char application on trace gas emissions from two sandy soil horizons. Journal of Environmental Quality, Vol. 43, pp. 1790–1798.
Sohi, S.P., Krull, E., Lopez-Capel, E., Bol, R. 2010.A review of biochar and its use and function in soil. Advances in Agronomy, Vol. 105, pp. 47-82.
نجفی قیری، مهدی، تأثیر کاربرد بیوچارهای مختلف بر برخی ویژگیهای خاک و قابلیت جذب بعضی از عناصر غذایی در یک خاک آهکی، 1394، نشریه پژوهشهای خاک. جلد 29. شماره 3. 358-351.
Abel, S., Peters, A., Trinks, S., Schonsky, H., Facklam, M., Wessolek, G. 2013. Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma, Vol. 202–203, pp. 183–191.
Bargmann, I., Rillig, M.C., Kruse, A., Greef, J.M., Kücke, M. 2014. Effects of hydrochar application on the dynamics of soluble nitrogen in soils and on plant availability. Journal of Plant Nutrition and Soil Science, Vol. 177, pp. 48–58.
الستی، امید.، قرخلو، جاوید، مروری بر تأثیر بیوچار در جذب و آبشویی علفکشها، 1394، مجله پژوهش علفهای هرز. جلد 7. شماره 1. 20-1.
Novak, J.A., Spokas, K.A., Cantrell, K.B., Ro, K.S., Watts, D.W., Glaz, B., Busscher, W.J., Hunt, P.G. 2014. Effects of biochars and hydrochars produced from lignocellulosic and animal manure on fertility of a Mollisol and Entisol. Soil Use Management, Vol. 30, pp. 175-181.
Bargmann, I., Rillig, M.C., Buss, W., Kruse, A., Kücke, M. 2013. Hydrochar and biochar effects on germination of spring barley. Journal of Agronomy and Crop Science, Vol. 199, pp. 360-373.
Reza, M.T., Lynam, J.G., Vasquez, V.R., Coronella, C.J. 2012. Pelletization of biochar from hydrothermally carbonized wood, Environmental Progress of Sustainable Energy, 31, pp. 225–234.
_||_
Lehmann, J. and Joseph, S. 2009. Biochar for Environmental Management: Science and Technology. Earth scan, London & Sterling, VA. 416p.
Uchimiya, M., Chang, S., Klasson, K.T. 2011. Screening biochars for heavy metal retention in soil: role of oxygen functional groups. Journal of Hazardous Materials. 190, pp. 432–441.
Yoshimura, M., and Byrappa, K. 2008. Hydrothermal processing of materials: past, present and future. Journal of Material Science, 48, pp. 2085-2103.
Gronwald, M., Don, A., Tiemeyer, B., and Helfrich, M. 2015. Effects of fresh and aged chars from pyrolysis and hydrothermal carbonization on nutrient sorption in agricultural soils. Soil, Vol. 1, pp. 475–489.
Gajic, A., and Koch, H.J. 2012. Sugar beet (Beta vulgaris) growth reduction caused by hydrochar is related to nitrogen supply. Journal of Environmental Quality, Vol. 41, pp. 1067-1075.
Libra, J.A., Ro, K.S., Kammann, C., Funke, A., Berge, N.D., Neubauer, Y., Titirici, M., Fühner, C., Bens, O., Kern, J., Emmerich, K.H. 2011. Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Advanced Biofuels, Vol. 2, pp. 89-24.
Yakaboylu, O., Harinck, J., Smit, K.G., de Jong, W. 2013. Supercritical water gasification of manure: A thermodynamic equilibrium modeling approach. Biomass Bioenergy, Vol. 59, pp. 253–263.
Castello, D., Kruse, A, Fiori, L. 2014. Supercritical water gasification of hydrochar, Chemical Engineering Research and Design http://dx.doi.org/10.1016/j.
Castello, D., Fiori, L. 2011. Supercritical water gasification of biomass: Thermodynamic constraints. Bioresearch Technology, Vol. 102, pp. 7574-7582.
Kruse, A., Funke, A., Titirici, M.M. 2013. Hydrothermal conversion of biomass to fuels and energetic materials. Current Opinion in Chemical Biology, Vol. 17, pp. 515–521.
Fang, J., Gao, B., Chen, J., Zimmerman, R. 2015. Hydrochars derived from plant biomass under various conditions: Characterization and potential applications and impacts. Chemical Engineering Journal, Vol. 267, pp. 253–259.
Cui, X., Antonietti, M., Yu, S.H. 2006.Structural effects of iron oxide nanoparticles and iron ions on the hydrothermal carbonization of starch and rice carbohydrates. Small, Vol. 2, pp. 756–759.
Sun, Y., Gao, B., Yao, Y., Fang, J., Zhang, M., Zhou, Y., Chen, H., Yang, L. 2014. Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties. Chemical Engineering Journal, Vol. 240, pp. 574–578
Guiotoku, M., Hansel, F.A., Novotny, E.H., de Freitas Maia, C.M.B. 2012. Molecular and morphological characterization of hydrochar produced by microwave‑assisted hydrothermal carbonization of cellulose. Pesquisa Agropecuaria Brasileira, Vol. 47(5), pp. 687-692.
Titirici, M.M., Antonietti, M. 2010. Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization. Chemical Society Review, Vol. 39, pp.103-116.
Davda, R.R., Shabaker, J.W., Huber, G.W., Cortright, R.D., Dumesic, J.A. 2005. A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts. Applied Catalysis, Vol. 56, pp. 171–186.
Akhtar, J., Amin, N.A.S. 2011. A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass. Renewable and Sustainable Energy Reviews, Vol. 15, pp. 1615–1624.
Hu, B., Wang, K., Wu, L., Yu, S.H., Antonietti, M., Titirici, M.M. 2010. Engineering carbon materials from the hydrothermal carbonization process of biomass. Advanced Materials, Vol. 22, pp. 813–828.
Jin, F., Enomoto, H. 2009. Hydrothermal conversion of biomass into value added products: technology that mimics nature. Bioresources, Vol. 4, pp. 704–713.
Laird, D., Fleming, P., Wang, B., Horton, R., Karlen, D. 2010. Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma, 158(3-4), pp. 436-442.
Liu, Z., Quek, A., Parshetti, G., Jain, A., Srinivasan, M.P., Hoekman, S.K., Balasubramanian, R. 2013. A study of nitrogen conversion and polycyclic aromatic hydrocarbon (PAH) emissions during hydrochar–lignite co-pyrolysis. Applied Energy, Vol. 108, pp. 74–81.
Basso, D., Ragazzi, M., Rada, E.C., Fiori, L. 2014. Release of PCDD/Fs during a hydrothermal carbonization process of organic waste residues. U.P.B. Sci. Bull., Series D, Vol. 76(2), pp. 199-212.
Liu, Z., Quek, A., Balasubramanian, R. 2014. Preparation and characterization of fuel pellets from woody biomass, agro-residues and their corresponding hydrochars. Applied Energy, Vol. 113, pp. 1315–1322.
Sun, K., Ro, K., Guo, M.X., Novak, J., Mashayekhi, H., Xing, B.S. 2011. Sorption ofbisphenol a, 17 alpha-ethinyl estradiol and phenanthrene on thermally andhydrothermally produced biochars. Bioresource Technology, Vol. 102, pp. 5757–5763.
Wigmans, T. 1989. Industrial aspects of production and use of activated carbon, Carbon, Vol. 27(1), pp. 13-22.
Xue, Y., Gao, B., Yao, Y., Inyang, M., Zhang, M., Zimmerman, A.R., Ro, K.S. 2012. Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: Batch and column tests. Chemical Engineering Journal, Vol. 200–202, pp. 673–680.
Bustamante, M.A., Alburquerque, J.A., Restrepo, A.P., De La Fuente, C., Paredes, C., Moral, R., Bernal, P. 2012. Co-composting of the solid fraction of anaerobic digestates, to obtain added value materials for use in agriculture. Biomass and Energy, Vol. 43, pp. 26-65.
Holm-Nielsen, J.B., Al Seadi, T., Oleskowicz-Popiel, P. 2009. The future of anaerobic digestion and biogas utilization. Bioresource Technology, Vol. 100(22), pp. 5478-5484.
Monaco, S., Sacco, D., Pelisetti, S., Dinuccio, E., Balsari, P., Rostami, M., Grignani, C. 2011. Laboratory assessment of ammonia emissions after soil application of treated and untreated manures. Journal of Agricultural Science, pp.1-9.
Dicke, C., Lanza, G., Mumme, J., Ellerbrock, R., Kern, J. 2014. Effect of HTC-char application on trace gas emissions from two sandy soil horizons. Journal of Environmental Quality, Vol. 43, pp. 1790–1798.
Sohi, S.P., Krull, E., Lopez-Capel, E., Bol, R. 2010.A review of biochar and its use and function in soil. Advances in Agronomy, Vol. 105, pp. 47-82.
نجفی قیری، مهدی، تأثیر کاربرد بیوچارهای مختلف بر برخی ویژگیهای خاک و قابلیت جذب بعضی از عناصر غذایی در یک خاک آهکی، 1394، نشریه پژوهشهای خاک. جلد 29. شماره 3. 358-351.
Abel, S., Peters, A., Trinks, S., Schonsky, H., Facklam, M., Wessolek, G. 2013. Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma, Vol. 202–203, pp. 183–191.
Bargmann, I., Rillig, M.C., Kruse, A., Greef, J.M., Kücke, M. 2014. Effects of hydrochar application on the dynamics of soluble nitrogen in soils and on plant availability. Journal of Plant Nutrition and Soil Science, Vol. 177, pp. 48–58.
الستی، امید.، قرخلو، جاوید، مروری بر تأثیر بیوچار در جذب و آبشویی علفکشها، 1394، مجله پژوهش علفهای هرز. جلد 7. شماره 1. 20-1.
Novak, J.A., Spokas, K.A., Cantrell, K.B., Ro, K.S., Watts, D.W., Glaz, B., Busscher, W.J., Hunt, P.G. 2014. Effects of biochars and hydrochars produced from lignocellulosic and animal manure on fertility of a Mollisol and Entisol. Soil Use Management, Vol. 30, pp. 175-181.
Bargmann, I., Rillig, M.C., Buss, W., Kruse, A., Kücke, M. 2013. Hydrochar and biochar effects on germination of spring barley. Journal of Agronomy and Crop Science, Vol. 199, pp. 360-373.
Reza, M.T., Lynam, J.G., Vasquez, V.R., Coronella, C.J. 2012. Pelletization of biochar from hydrothermally carbonized wood, Environmental Progress of Sustainable Energy, 31, pp. 225–234.