Spatial Pattern Analysis of Heat Waves in Guilan Province
Subject Areas : climateSharareh Seydgar 1 , atoosa bigdeli 2 * , parviz rezaei 3
1 - Depatment of Geography .Eslamic Azad University. Rasht. Iran
2 - Department of Geography, Faculty of Human Science, Islamic Azad University Rasht Branch,, Rasht, Iran.
3 - Associate professor, Department of Geography, Rasht Branch, Islamic Azad University, Rasht, Iran
Keywords: Warm waves, wave threshold, local Moran I Statistics, spatial pattern, Guilan province,
Abstract :
In recent decades, the occurrence of heat waves has been increasing and this can be caused by human effects.in this research, by presenting a specific definition of heat wave threshold, its spatial pattern were investigated in the Guilan province.Maximum temperature data was obtained from the ECMWF website with a spatial resolution of and dimensions of on a daily scale for 40 years (1981 to 2020).Then, 90th percentile threshold and a 3-day sequence on the daily maximum temperature, heat waves were identified and the frequency was counted with a sequence of 3, 6, 9 to 30 days. Spatial statistics such as global and local Moran's I and t-test were used to identify the pattern, temporal and spatial behavior and frequency-intensity of heat waves. The results showed that the main occurrencepattern of heat waves in all wavelengths is cluster type and non-random behavior dominates them. Also, the results of the local Moran's I indicate that the HH and LL patterns exist in most heat waves with sequences of 3 to n days, and the number of zones containing the above patterns in short-term waves is more than waves are long-term. In other words, the spatial pattern of heat waves in longer wavelengths is also homogeneous and the entire province has a random behavior in terms of the frequency of their occurrence. In this regard, the t-test of the heat waves frequencyalso confirms the predominant non-random and randombehavior in short-term and long-term sequences, alternatively.
اسماعیل¬نژاد، مرتضی. (1393). مخاطرات اقلیمی و امنیت؛ موج¬های گرمایی در خراسان جنوبی. نشریه دانش انتظامی خراسان جنوبی، 2 (9)، 34 تا 39.
خسروی، یونس؛ بحری، علی. (1397). استفاده از تکنیکهای آمار فضایی جهت بررسی تغییرات زمانی-مکانی غلظت کلروفیل a در خلیجفارس. زیست¬شناسی دریا، 10 (1)، 33 تا 46.
خورشید دوست، علی محمد؛ زنگنه شهرکی، سعید؛ زارعی، یوسف؛ محمودی، سعید. (1396). تحلیل همدیدی مخاطره امواج گرما در شمال غرب ایران. فصلنامه جغرافیای طبیعی، 10 (37)، 1 تا 14.
علیجانی، بهلول؛ ٍثروتی، محمدرضا؛ علیزاده ویلنی، عمران. (1392). طبقه¬بندی موج گرما در استان گیلان. فصلنامه جغرافیای طبیعی، 6 (19)، 1 تا 16.
علیجانی، بهلول؛ دوستکامیان، مهدی؛ اشرفی، سعیده؛ شاکری، فهیمه. (1394). بررسی تغییرات الگوهای خود همبستگی فضایی درون دههای بارش ایران طی نیم قرن اخیر. جغرافیا و آمایش شهری منطقه¬ای، 5 (14)، 71 تا 88.
Barnett, A. G., Hajat, S., Gasparrini, A., & Rocklov, J., (2012), “Cold and heat waves in the United States”, Environmental Research, 112: 218–224. Doi: 10.1016/j.envres.2011.12.010
. Bell, J. L., Sloan, L. C., Snyder, M. A., (2004), “Regional Changes in Extreme Climatic Events: A Future Climate Scenario”, Journal of Climate, 17: 81-87. Doi.org/10.1175/1520-0442 (2004)017<0081: RCIECE>2.0.CO; 2
. Beniston, M., (2004), “The 2003 heat wave in Europe: A shape of things to come? An analysis based on Swiss climatological data and model simulations”, Geophysical research letters, 31 (2): 1-4. Doi.org/10.1029/2003GL018857
. Besson, F., Dubuisson, B., Etchevers, P., Gibelin, A. L., Lassegues, P., Schneider, M., & Vincendon, B., (2019), “Climate monitoring and heat and cold waves detection over France using a new spatialization of daily temperature extremes from 1947 to present”, Advances in Science & Research, 16: 149–156. Doi.org/10.5194/asr-16-149-2019
. Ceccherini, G., Russo, S., Ameztoy, I., Romero, C. P., & Carmona-Moreno. C., (2015), “Magnitude and frequency of heat and cold waves in recent decades: the case of South America”, Natural Hazards Earth System Science, 3: 7379-7409. Doi: 10.5194/nhessd-3-7379-2015
. Changnon, D., Sandstorm, M., & Schaffer, C., (2003), Relating changes in agricultural practices to increasing dew points in extreme Chicago heat waves, Climate Research, 24: 243-254. Doi: 10.3354/cr024243
Dasari, H. P., Salgado, R., Perdigao, J., & Challa, V. S., (2014), “A Regional Climate Simulation Study Using WRF-ARW Model over Europe and Evaluation for Extreme Temperature Weather Events”, International Journal of Atmospheric Sciences, 2014: 1-22. Doi.org/10.1155/2014/704079
. Depietri, Y., & McPhearson, T., (2019), “Changing urban risk: 140 years of climatic hazards in New York City”, Climatic Change, 148 (1): PP: 95-108. Doi.org/10.1007/s10584-018-2194-2
. Dhorde, A. G., Korade, M. S., & Dhorde, A. A., (2017), “Spatial distribution of temperature trends and extremes over Maharashtra and Karnataka States of India”, Theor Appl Climatol, 130:191–204.Doi.org/10.1007/s00704-016-1876-9
Domonkos, P., Kysely, J., Piotrowicz, K., Petrovic, P., & Likso, T., (2003), “Variability of extreme temperature events in south–central Europe during the 20th century and its relationship with large-scale circulation”, International journal of climatology, 23: 987–1010. Doi: 10.1002/joc.929
Esmailnejad, M., (2106), “The spatial analysis of heat waves in south east of Iran a case study: Sistan and Baluchestan province”, Geographia Technica, 11 (2): 50-60.Doi:10.21163/GT_2016.112.05
. Geirinhas, J. L., Trigo, R. M., Libonati, R., Coelho, C. A. S., & Palmeira, A. C., (2017), “Climatic and synoptic characterization of heat waves in Brazil”, International journal of climatology, 33 (4): 1760-1776. Doi.org/10.1002/joc.5294
. Herrera, R. G., Diaz, J., Trigo, R. M., & Hernandez, E., (2005), “Extreme summer temperatures in Iberia: health impacts and associated synoptic conditions”, Annales Geophysicae, 23: 239-251. Doi.org/10.5194/angeo-23-239-2005
. Kim, Y. H., Min, S. K., Stone, D. A., Shiogama, H., & Wolski, P., (2018), “Multi-model event attribution of the summer 2013 heat wave in Korea”, Weather and Climate Extremes, 20: 33-44.Doi.org/10.1016/j.wace.2018.03.004
Mahdi, S. S., & Dhekale, B. S., (2016), “Long term climatology and trends of heat and cold waves over southern Bihar, India”, Journal of Earth System Science, 125 (8): 1557–1567. Doi 10.1007/s12040-016-0762-2
. Roshan, GH. R., Ghanghermeh, A. A., & Kong, Q., (2018), “Spatial and temporal analysis of outdoor human thermal comfort during heat and cold waves in Iran”, Weather and Climate Extremes, 19: 58-67.Doi:10.1016/j.wace.2018.01.005
. Sfica, L., Croitoru, A. E., Iordache, I., & Ciupertea, A. F., (2017), “Synoptic Conditions Generating Heat Waves and Warm Spells in Romania”, Atmosphere, 8 (3): 1-22, Doi.org/10.3390/atmos8030050
. Simões dos Reis, N. C., Boiaski, N. T., & Ferraz, S. E. T., (2019), “Characterization and Spatial Coverage of Heat Waves in Subtropical Brazil”, Atmosphere, 10 (5): 284-299.Doi: 10.3390/atmos10050284
. Spinoni, J., Lakatos, M., Szentimrey, T., Bihari, Z., Szala, S., Vogt, J., & Antofie, T., (2015), “Heat and cold waves trends in the Carpathian Region from 1961 to 2010”, International journal of climatology, 35: 4197–4209. Doi: 10.1002/joc.4279
. Wenlan, G., Keqin, D., & Shuangshuang, L., (2019), “Spatial-temporal variations in cold surge events in northern China during the period 1960–2016”, Journal of Geographical Sciences, 29 (6): 971-983.Doi.org/10.1007/s11442-019-1668-0
.