Subject Areas :
مصطفی کاظمی 1 , محمد اسفندیار 2 , حدیث نجاریان 3
1 - دانشیار مدیریت، دانشگاه فردوسی مشهد، مشهد، ایران
2 - دانشجوی دکتری مدیریت تحقیق در عملیات، دانشگاه فردوسی مشهد، پردیس بینالملل، مشهد، ایران
3 - کارشناسی ارشد مدیریت، دانشگاه مازندران، ساری، ایران
Keywords: تصمیمگیری چندهدفه, واژگان کلیدی: مراکز توزیع امداد, تحلیل سلسه مراتب فازی, روش LP,
Abstract :
منابع
آذر عادل، رجبزاده علی (1389). تصمیمگیری کاربردی رویکرد MADM تهران: نگاه دانش؛
اسلامی، علیرضا (1385). مکانیابی مراکز امداد اسکان (نمونه موردی منطقه یک شهرداری تهران)
Afshar, A. , Haghani, A. (2012). Modeling integrated supply chain logistics in real-time large-scale disaster relief operations. Socio-Economic Planning Sciences, article in press.
Barbarosoglu, G. , Ozdamar, L. , Cevik, A. (2002). An interactive approach for hierarchical analysis of helicopter logistics in disaster relief operations. European Journal of Operational Research 140: 118–133.
B. Balcik, B. M. Beamon, K. Smilowitz (2008). Last mile distribution in humanitarian relief، Journal of Intelligent Transportation Systems, 12 (2): 51–63.
Chankong, V. and Haimes, Y. Y. (1983). Multiobjectiva Decision Making Theory and Methodology, New york: Elsevier Science Publishing.
Djamel Berkoune [et. al] (2012). Transportation in disaster response operations,Socio-Economic Planning Sciences 46: 23-32.
Jiang-Hua Zhang, Jin Li, Zhi-Ping Liu (2012). Multiple-resource and multiple-depot emergency response problem considering secondary disasters، Expert Systems with Applications 39: 11066–11071
Kwong c. k. , H. A Bai. Fuzzy (2002). AHP approach to the determination of importance weights of customer requirements in quality function deployment. Journal of Intelligent Manufacturing 13: 367-377.
Messac, A. Sukam, C. P. and Melachrinoudis, E. (2000). Aggregate Objective Functions and Pareto Frontiers: Required Relationships and Practical Implications, Optimization and Engineering, 1 (2): 171-188.
Liangjun Ke n, Zuren Feng (2013). A two-phase metaheuristic for the cumulative capacitated vehicle routing problem، Computers & Operations Research 40: 633–638
Lin, Y. , Batta, R. , Rogerson, A. P. , Blatt, A. , Flanigan, M. (2011). A logistics model for emergency supply of critical items in the aftermath of a disaster. Socio-Economic Planning Sciences 45 (4): 132–145.
Messac, A. and Ismail-Yahaya, A. I. (2001). Required Relationship Between Objective Function and Pareto Frontier Orders: Practical Implications”, AIAA Journal, 39 (11): 2168-2174.
Miettinen, K. (1999). Nonlinear Multiobjective Optimization, Boston: Kluwer Academic Publishers.
Nishikawa, S. (2003). Total disaster risk management for sustainable development. In: Proceeding of the International Conference on TDRM, Japan
Percin S. (2008). Use of fuzzy AHP for evaluating the benefits of informationsharing decisions in a supply Uchain. Journal of Enterprise Information Management 21: 263-284.
Sascha Wohlgemuth, Richard Oloruntoba, Uwe Clausen, (2012). Dynamic vehicle routing with anticipation in disaster relief، Socio-Economic Planning Sciences 46: 261-271.
Sheu JB. (2007). Challenges of emergency logistics management. Transportation Research Part E: Logistics and Transportation Review 43 (6): 655-9.
Tzeng, G. H. , Cheng, H. J. , Huang, T. D. (2007). Multi-objective optimal planning for designing relief delivery systems. Transportation Research Part E: Logistics and Transportation Review 43: 673–686.
Ozdamar L, Ekinci E, Kucukyazici B. (2004). Emergency logistics planning in natural disasters. Annals of Operations Research 129 (1e4): 217-245.
Wassenhove LNV. (2006). Humanitarian aid logistics: supply chain management in high gear. The Journal of the Operational Research Society 57 (5): 475-89.
W. Yi, A. Kumar (2007). Ant colony optimization for disaster relief operations ,Transportation Research Part E: Logistics and Transportation Review, 43 (6): 660–672.
Zhan, S. , Liu, N. (2011). A multi-objective stochastic programming model for emergency logistics based on goal programming. Fourth International Joint Conference on Computational Sciences and Optimization. IEEE Computer Society, Washington, DC, USA.