Solving Fuzzy LR Interval Linear Systems using Nonlinear Programming
Subject Areas : Fuzzy Optimization and Modeling JournalKhatere Ghorbani-Moghadam 1 * , Reza Ghanbari 2 , Mahnoosh Salari 3
1 - Mosaheb Institute of Mathematics, Kharazmi University, Tehran, Iran
2 - Faculty of Mathematical Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
3 - Department of Mathematical Sciences, Ferdowsi University of Mashhad, Iran
Keywords: Fuzzy linear systems, LR fuzzy interval, Approximate solution, Quadratic programming,
Abstract :
In this paper, we use the least squares method to solve LR fuzzy interval systems by transforming an interval fuzzy number into two triangular fuzzy numbers. Then, we reduce the distance between the two obtained triangular fuzzy numbers to solve the fuzzy LR interval linear system. Essentially, we convert an LR fuzzy interval linear system into a triangular fuzzy linear system and subsequently solve it using the least squares method introduced in [17, 18].
1. Abbasi, F., & Allahviranloo, T. (2022). Solving fully fuzzy linear system: a new solution concept. Information Sciences, 589, 608-635.
2. Abbasi, F., Allahviranloo, T., & Abbasbandy, S. (2015). A new attitude coupled with fuzzy thinking to fuzzy rings and fields. Journal of intelligent & fuzzy systems, 29(2), 851-861.
3. Abdollahipour, R., Eisaabadi, N., & Khandani, K. (2023). Necessary and sufficient conditions for crisp state-feedback design for fuzzy linear systems. Fuzzy Sets and Systems, 473, 108726.
4. Bertsimas, D., & Tsitsiklis, J. N. (1997). Introduction to linear optimization (Vol. 6, pp. 479-530). Belmont, MA: Athena Scientific.
5. Buckley, J. J., Eslami, E., & Feuring, T. (2013). Fuzzy mathematics in economics and engineering (Vol. 91). Physica.
6. Buckley, J. J. (1992). Solving fuzzy equations. Fuzzy sets and systems, 50(1), 1-14.
7. Buckley, J. J., & Qu, Y. (1991). Solving systems of linear fuzzy equations. Fuzzy sets and systems, 43(1), 33-43.
8. Coleman, T. F., & Li, Y. (1996). A reflective Newton method for minimizing a quadratic function subject to bounds on some of the variables. SIAM Journal on Optimization, 6(4), 1040-1058.
9. Chakraverty, S., & Behera, D. (2013). Fuzzy system of linear equations with crisp coefficients. Journal of Intelligent & Fuzzy Systems, 25(1), 201-207.
10. Dragić, Đ., Mihailović, B., & Nedović, L. (2024). The general algebraic solution of dual fuzzy linear systems and fuzzy Steinmatrix equations. Fuzzy Sets and Systems, 487, 108997.
11. Friedman, M., Ming, M., & Kandel, A. (1998). Fuzzy linear systems. Fuzzy sets and systems, 96(2), 201-209.
12. Gasilov, N. A., Fatullayev, A. G., & Amrahov, Ş. E. (2018). Solution method for a non-homogeneous fuzzy linear system of differential equations. Applied Soft Computing, 70, 225-237.
13. Allahviranloo, T., Haghi, E., & Ghanbari, M. (2012). The nearest symmetric fuzzy solution for a symmetric fuzzy linear system. Analele ştiinţifice ale Universităţii" Ovidius" Constanţa. Seria Matematică, 20(1), 151-172.
14. Ghanbari, M., Allahviranloo, T., & Pedrycz, W. (2022). A straightforward approach for solving dual fuzzy linear systems. Fuzzy Sets and Systems, 435, 89-106.
15. Ghanbari, R., & Mahdavi-Amiri, N. (2010). New solutions of LR fuzzy linear systems using ranking functions and ABS algorithms. Applied Mathematical Modelling, 34(11), 3363-3375.
16. Ghanbari, R., & Mahdavi-Amiri, N. (2015). Fuzzy LR linear systems: quadratic and least squares models to characterize exact solutions and an algorithm to compute approximate solutions. Soft computing, 19, 205-216.
17. Ghanbari, R., Mahdavi, A. N., & Yousofpour, R. (2010). Exact and approximate solutions of fuzzy LR linear systems: New algorithms using a least squares model and the ABS approach. Iranian Journal of Fuzzy Systems, 7, 1-18.
18. Salari, M., Ghanbari, R., & Ghorbani-Moghadam, K. (2022). Least Squares Method for Solving Fuzzy LR Interval Algebraic Linear Systems. Fuzzy Information and Engineering, 14(3), 349-359.
19. Salari, M., Ghanbari, R., & Ghorbani-Moghadam, K. (2022). New Method for Solving Fuzzy LR Interval Linear Systems Using Least Squares Models. Fuzzy Information and Engineering, 14(3), 335-348.
20. Moloudzadeh, S., Darabi, P., & Khandani, H. (2013). The pseudo inverse matrices to solve general fully fuzzy linear systems. Journal of soft computing and applications, 2013, 1-11.
21. Abramovich, F., Wagenknecht, M., & Khurgin, Y. I. (1988). Solution of LR-type fuzzy systems of linear algebraic equations. Busefal, 35, 86-99.
22. Ming, M., Friedman, M., & Kandel, A. (1997). General fuzzy least squares. Fuzzy sets and systems, 88(1), 107-118.
23. Muzzioli, S., & Reynaerts, H. (2007). The solution of fuzzy linear systems by non-linear programming: a financial application. European Journal of Operational Research, 177(2), 1218-1231.
24. El Mobaraky, A., Kouiss, K., & Chebak, A. (2024). First-order rule partitions-based decomposition technique of type-1 and interval type-2 rule-based fuzzy systems for computational and memory efficiency. Information Sciences, 680, 121154.
25. Nafei, A., Gu, Y., & Yuan, W. (2021). An extension of the TOPSIS for multi-attribute group decision making under neutrosophic environment. Infinite Study.
26. Nafei, A., Javadpour, A., Nasseri, H., & Yuan, W. (2021). Optimized score function and its application in group multiattribute decision making based on fuzzy neutrosophic sets. International Journal of Intelligent Systems, 36(12), 7522-7543.
27. Nafei, A. H., Yuan, W., & Nasseri, H. (2019). Group multi-attribute decision making based on interval neutrosophic sets. Infinite Study. 28, 309-316.
28. Nasseri, S. H., Gholami, M., & Babolsar, I. (2011). Linear system of equations with trapezoidal fuzzy numbers. The Journal of Mathematics and Computer Science, 3(1), 71-79.
29. Nasseri, S. H., & Zavieh, H. (2018). A multi-objective method for solving fuzzy linear programming based on semi-infinite model. Fuzzy Information and Engineering, 10(1), 91-98.
30. Nguyen, H. T., Walker, C., & Walker, E. A. (2018). A first course in fuzzy logic. Chapman and Hall/CRC.
31. Pandit, P. (2013). Fuzzy System of Linear Equations. Dynamical Systems Supplement, 19-27.
32. Pandit, P. (2013). Systems with Negative Fuzzy Parameters. International Journal of Innovative Technology and Exploring Engineering, (3),10-21.
33. Park, I. S., Park, C. E., Kwon, N. K., & Park, P. (2021). Dynamic output-feedback control for singular interval-valued fuzzy systems: Linear matrix inequality approach. Information Sciences, 576, 393-406.
34. Hashemi, M. S., Mirnia, M. K., & Shahmorad, S. (2008). Solving fuzzy linear systems by using the Schur complement when coefficient matrix is an M-matrix,15-29.
35. Selvaraj, P., Kwon, O. M., Lee, S. H., & Sakthivel, R. (2024). Disturbance rejections of polynomial fuzzy systems under equivalent-input-disturbance estimator approach. Fuzzy Sets and Systems, 488, 109013.
36. Stanimirović, S., & Micić, I. (2022). On the solvability of weakly linear systems of fuzzy relation equations☆. Information Sciences, 607, 670-687.
37. Zarei, H., Khastan, A., & Rodríguez-López, R. (2023). Suboptimal control of linear fuzzy systems. Fuzzy Sets and Systems, 453, 130-163.
38. Zimmermann, H. J. (2011). Fuzzy set theory-and its applications. Springer Science & Business Media.