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A R T I C L E  I N F O  A B S T R A C T 

In this paper‎,‏‎ we use the least squares method to solve LR fuzzy interval 

systems by transforming an interval fuzzy number into two triangular fuzzy 

numbers. Then, ‎w‎e reduce the distance between the two obtained triangular 

fuzzy numbers to solve the fuzzy ‎LR‎ interval linear system. Essentially, we 

convert an LR fuzzy interval linear system into a triangular fuzzy linear system 

and subsequently solve it using the least squares method introduced ‎in [17, 18]. 
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1. Introduction 

Solving a fuzzy linear system has been popular during the past two decades [5, 6]. Fuzzy linear systems 

have been studied under various assumptions. Buckley et al. [5, 7] studied square fuzzy linear systems,  ̃ ̃   ̃, 

based on α-cuts, extension principal, and interval arithmetic, where the elements of  ̃ and  ̃ are fuzzy numbers. 

Stanimirovi´c and Mici´c [36] described a set of fuzzy relations that solves weakly linear systems to a certain 

degree and provides ways to compute them. They paid special attention to developing the algorithms for 

computing fuzzy pre-orders and fuzzy equivalences that are solutions to some extent to weakly linear systems. 

Stanimirovi´c and Mici´c [36] established additional properties for the set of such approximate solutions over 

some particular types of complete residuated lattices. They demonstrated the advantage of this approach via 

many examples that arise from the problem of aggregation of fuzzy networks. Zarei et al. [37] studied first-order 

linear fuzzy systems under generalized differentiability and presented the general form of their solutions. Then, 

the fuzzy optimal control problem of these systems was considered to optimize the expected values of the 

appropriate objective fuzzy functions. The pontryagin maximum principle was used to obtain a necessary 
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optimality condition in the form of a fuzzy boundary value problem. Using the necessary optimality condition, 

the constant formulas for the fuzzy optimal control function and the corresponding fuzzy state function were 

proposed. Abbasi and Allahviranloo [1] presented a method for solving the fully fuzzy linear systems by using 

the transmission-average-based fuzzy operations introduced by Abbasi et al. [2]. Also, they presented the 

necessary conditions for the existence and uniqueness of the fuzzy solution. Park et al. [33] introduced an 

admissibilization condition for singular interval-valued fuzzy systems with a dynamic output-feedback 

controller using a linear matrix inequality approach. For the closed-loop system of the singular interval-value 

fuzzy systems using the dynamic output-feedback controller, the derivation of the admissibility criterion 

(satisfying regularity, non-impulsiveness, and stability) was concerned. The derived criterion was represented as 

the parameterized matrix inequalities depending on the membership functions of the system and the controller. 

Gasilov et al. [12] proposed a new solution method for a nonhomogeneous fuzzy linear system of differential 

equations. The coefficients of the considered system were crisp while forcing functions and initial values were 

fuzzy. They considered each forcing function to be in a special form, which they called a triangular fuzzy 

function and which represents a fuzzy bunch (set) of real functions. They constructed a solution as a fuzzy set of 

real vector functions, not as a vector of fuzzy-valued functions, as usual. Ghanbari and Mahdavi-Amiri [16] and 

Ghanbari et al. [17] gave results on the solvability of LR fuzzy interval systems. Also, Ghanbari et al. [16, 17] 

proposed a new definition of an approximate solution when an exact solution does not exist. In both works [16] 

and [17] (also [21]), least squares models were used. Indeed, they [16] showed that the approximate solution 

proposed in [16] is more robust and proper than the solution proposed in [17]. 

      In [16] (also, [15, 17, 21]), the authors studied fuzzy linear systems with fuzzy variables. Here, we intend to 

develop the recent results given by Ghanbari and Mahdavi-Amiri [16] to the fuzzy interval linear systems when 

the type of fuzzy interval is LR [38]. We will show that some similar results given by Ghanbari and Mahdavi-

Amiri [16] are valid for fuzzy LR interval linear systems. In addition, using a similar definition of an 

approximate solution for the fuzzy linear systems given by [16], we will give some new results for LR fuzzy 

interval linear systems. Nafei et al. [26] presented extensions of fuzzy sets such as interval-valued fuzzy sets, 

intuitionistic fuzzy sets, interval-valued intuitionistic fuzzy sets, type n-fuzzy sets, and neutrosophic sets, 

provided powerful and practical tools for dealing with uncertainty in decision-making problems. 

They first proposed a modified score function for ranking single-valued neutrosophic numbers. Then, they 

suggested a TOPSIS method based on the proposed function for decision-making under group recommendation. 

Also, Nafei et al. [27] presented a new method for group multi-attribute decision-making (GMADM) based on 

interval neutrosophic sets, where decision-makers determine the weights and the evaluating values of the 

attributes with respect to the available alternatives by using interval neutrosophic values. In another work, 

Nafei et al. [25] developed a new Hamming distance between single-valued neutrosophic numbers and then 

presented an extension of the TOPSIS method for multi-attribute group decision-making (MAGDM) based on 

single-valued neutrosophic sets, where the information about attribute values and attribute weights are expressed 

by decision-makers based on neutrosophic numbers. See the others work in [3, 10, 24, 35]. 

     It is noteworthy that fuzzy interval linear systems are studied by ([9, 13, 20, 31,32, 34]). All of these methods 

were based on the crisp or fuzzy linear algebraic methods. However, we propose an approximate solution based 

on a least squares model and the distance function proposed by Ming et al. [22]. To compute an approximate 

solution, we propose a quadratic programming model with linear constraints. 

    The concept proposed here has many applications in real case studies. For example, fuzzy linear systems of 

equations play a major role in various financial and economic applications. We can analyze a particular fuzzy 

linear system: the derivation of the risk-neutral probabilities in a fuzzy binary tree [14,23]. 

      The rest of the paper is organized as follows. In Section 2, we give some necessary and sufficient conditions 

for solving fuzzy LR linear systems. We propose a new concept for the approximate solution of a fuzzy linear 

system and present a quadratic programming model to compute such solutions in Section 3. In Section 4, we use 

numerical experiments to demonstrate the goodness of fit of our approximate solution compared to other 

approximate solutions. We conclude in Section 5. 
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2. Solvability of LR fuzzy interval linear systems 

First, we describe some concepts which are used in our paper. Then we discuss a bout solvability of fuzzy 

LR interval linear systems. 

Definition 1.  (Transformed interval fuzzy number) For any arbitrary fuzzy LR interval number, there exist 

 ̃  (           ) two LR triangular fuzzy numbers  ̃     and  ̃      which are defined as follows: 

 ̃     ( 
             )

  
   ̃      ( 

             )
  

                                                       (1) 

The notations in (1) are shown in Figure 1. 

 

 

 

 

 

 

 

 

Figure 1. Transformed interval fuzzy number 

 

Example 1.  Let  ̃  (        ) be a fuzzy LR interval number. Corresponding to  ̃ two LR triangular fuzzy 

numbers  ̃     and  ̃      are calculated as follows: 

 ̃     (      )     ̃      (     )  . 

 

Definition 2.  [30] A fuzzy number is a fuzzy quantity A satisfying the following conditions: 

1.   ̃( )   , for exactly one x. 

2. The support *    ̃( )   + of A is bounded. 

3. The α-cuts of A are closed intervals. 

 

Definition 3. [38] A fuzzy number  ̃ is an LR-type if there exist shape function L (for left), R (for right) and 

scalars         with, 

{

 .
   

 
/       

 (
   

 
)       

 

The mean value  ̃, a, is a real number, α and β are called the left and right spreads, respectively.  ̃ is 

denoted  ̃  (     ) (see Figure 2). 

Remark 1. Based on Definition (3), another representation of an LR fuzzy number  ̃ is  ̃  (     ), where    

is a shape function for the left arm and    is a shape function for the right arm. 

 

 

 

 

 

 

 

 

 Figure 2. LR fuzzy number 
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Definition 4.  [38] A fuzzy trapezoidal or interval  ̃  (           )  
 is of LR type, if there exist shape 

functions L and R (for left and right) and scalars        ,    and    with the following membership 

function: 

 

  ̃( )   

{
 
 

 
  .
    
 /                

                                 

 (
    
 
)               

                                        

 

which is called a fuzzy LR interval number, where         and       and L, R are generating functions 

nondecreasing and nonincreasing of    into [0, 1], respectively. 

 

Theorem 1.  Let  ̃  (           )  
,  ̃  (           )  

, and       . Then [38], 

1.       ̃  (               )  
. 

2.       ̃  (                 )  
. 

3.  ̃    ̃  (                       )  
. 

Remark 2. Here, the set of LR fuzzy intervals is denoted by  (  )
  

. 

Definition 5.  The vector  ̃  ( ̃   ̃     ̃ )
  is called a fuzzy LR interval vector, if    ̃  . ̃ 

 
  ̃ 
 
  ̃ 
 
  ̃ 
 
/  

 (  )
  
        . To indicate the fuzzy LR interval vector  ̃, we use the notations  ̃  (           )  

, 

   (  
    
      

 )
 

,    (  
    
      

 ) ,    (  
    
      

 ) , and     (  
    
      

 )
 
. 

Now, we give the definition of a fuzzy LR interval linear system. 

Consider an FLRILS, corresponding to coefficients matrix   [   ]   
.We define the following two 

matrices 

 

,  -   {
              

                 
              ,  -   {

           

              
                                                                           (2) 

for all         and        . Also, let    (  
      

 )
 

,    (  
      

 ) ,    (  
      

 )  and 

   (  
      

 )
 

. 

Definition 6.  According to (1) the fuzzy numbers in fuzzy LR interval (2) are define as follows: 

 ̃     ( 
             )

  
   ̃      ( 

             )
  
  

 ̃     ( 
             )

  
   ̃      ( 

             )
  
  

According to Defintion (6), the vectors  ̃    and  ̃    are defined as follows: 

 ̃    .         
      

 
/  [

 ̃    
 ̃     

],          ̃    .         
      

 
/   [

 ̃    

 ̃     
] 

      [
  

  
] ,      

   0
  

        
1 ,       

 
  [
       

 

 
 

] 

      [
  

  
] ,       

   [
  

        
] ,        

 
  [
       

 

 
 

] 
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Definition 7. The following system is called a fuzzy LR converted linear system (FLRCLS): 

          ̃     ̃                                                                                                                                   (3) 

where,       
      and  ̃    ( ̃   

   ̃   
 )  

   (   ) and  ̃    ( ̃   
   ̃   

 )
  

 
  (   ). 

Theorem 2. (Fundamental Theorem of FLRCLS) Let the system (3),   ̃     (  
 )   is a solution of the 

system (3), if and only if (               ) is the solution of the following crisp system: 

{
  
 

  
 
             

             

             

             

                              

                          

                                                                                                                                      (4) 

Proof 1. According to (4), for the equations (1), (2) and (5) we can write: 

 

                                                                                                                                                        (5) 

     

and the constraints (3) to (6) are equivalent to: 

 

[
    
      

 

     
     

 ]  [
    
 

    
 ]  =  [

    
 

    
 ] ,     [

    
 

    
 ]    ,                                                            (6) 

Now, it is sufficient to prove  ̃     ( 
  )
  

 is the solution of (3), if and only if      and .    
       

  
/
 

                    

are the solution of two systems (5) and (6),we can prove it based on Theorem 3.1 [19].     

Theorem 3. The vector  ̃  (           )
  
  (  )   is the solution of   ̃   ̃, if and only if  ̃    is the 

solution of (4). 

Proof 2.  Let  ̃  (           ) is a solution of the system   ̃   ̃, so the following systems have solution  

{
             

             
                                                                                                                                    (7) 

and 

{

             

              

        

                                                                                                                               (8) 

Considering to the solvability of the systems (7) and (8), the following system has the solution: 

 

{
 

 
                                                                                             

                                         

                                        

                                                                                               

                                                  (9) 

 

We can rewrite the system (2.9) in the matrix form as follows: 

[

       

       
       
       

] [

  

        

        

  

]  [

  

        

        

  

]                                                        (10) 

On the one hand, since  ̃  is a fuzzy LR interval number, so          ,       (        ), 

so      
      

 
 . Tuhs, we can write the systems (7) and (10) as follows: 
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and 

[
    
      

 

     
     

 ]  [
    
 

    
 ]  =  [

    
 

    
 ] ,       [

    
 

    
 ]      

 

 ̃    is the solution of system (4). 

 

On the contrary, let  ̃    is the solution of the system (4), so by using the equation (1), (2) and (5) in (4)  we 

conclude the following system: 

{
            

            

     
 

by using of the equation (3) to (6), we can conclude: 

{
             

             

       

 

and this means the system   ̃   ̃ is solvable. 

By reducing the distance between   ̃ and  ̃ an approximate or exact solution for the system   ̃   ̃ can be 

calculated. On the other hand, considering Theorem 2.7, since the system (5) is equivalent to the system   ̃  

 ̃, it can be expected that reducing the distance   ̃ and  ̃ will be equivalent to reducing the distance Anew 

     ̃    and  ̃   . Therefore, in the next section, we will obtain the exact or approximate solution of the 

triangular fuzzy LR linear system (5) by solving a quadratic programming problem similar to the method 

proposed by Ghanbari and Mahdavi Amiri [16], and then using a definition, we will construct the exact or 

approximate solution of the system   ̃   ̃. 

3. Proposed algorithm for finding an approximate solution 

Here, similar to the concept an approximate of the solution proposed in [16], we define an approximate 

solution for FLRILS. For two fuzzy LR interval vectors  ̃  ( ̃   ̃     ̃ )  and  ̃  ( ̃   ̃     ̃ )  with 

 ̃  .  
 
   
 
   
 
   
 
/
  

 and  ̃  .  
 
   
 
   
 
   
 
/
  

,         , Ming et al. [22] defined the following 

distance function: 

   
 ( 
 
  
 
)   (     )

 (     )                        

  (     )
 (     )   (     )

 (     )

  (     )
 (     )  (     )

 (     )

 (     )
 
(     )                                             

                                                                                      (11) 

Now, for each  ̃   (  )  , we define the residual at   ̃ as follows:  

    ( ̃)     
 (  ̃  ̃)                                                                                                                                           (12) 

Therefore, for each  ̃     ( 
  )
  

 he residual at  ̃    is defined as follows: 

 ( ̃   )     
 (     ̃     ̃   ) 

Thus, to compute an approximate or exact solution of (5), we must solve the following optimization problem: 

  {

    ( ̃   )     
 (     ̃     ̃   ) 

                                                                       

 ̃     ( 
  )
  
                                         

                                                                                            (13) 

where, for each vector   ̃    .         
      

 
/        ̃    .         

      
 
/. 

According to definition     
  and     

  in 2.2, we can write: 

  ̃    .             
     

      
         

     
      

     
 
/
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We have, 

 . ̃new /     
 . new  ̃new   ̃new /   . new  new   new /

 
. new  new   new /

  .   new  new 
     new  new 

 
  

new 
 /

 
.   new  new 

     new  new 

 
  

new 
 /

  .    new  new 
     new  new 

 
  

new 

 
/
 
.    new  new 

     new  new 

 
  

new 

 
/

   . new  new   new /
 
.    new  new 

     new  new 

 
    new  new 

 

    new  new 

 
  

new 
   

new 

 
/  

              (14) 

The matrix for of (14) by calculating       ,       and      is as follows: 

 ( ̃   )  
 

 
[    
      

       
  ]  [

    
 

    
  

    
  
]      [

    
 

    
  

    
  
]      

where c is constant and Q is a symmetric matrix. Therefore, to compute an approximate or exact solution of (5), 

we can solve the following quadratic programming problem: 

{
 
 

 
 
 

 
[    
      

       
  ] [

    
 

    
  

    
  
]     [

    
 

    
  

    
  
]      

                                                                                             

    
      

 
                                                                     

                                                              (15) 

After solving (15), we can find     ,     
  and     

 
. We can find an approximate or exact solution by using 

following definition: 

Definition 8. Let  ̃    is the solution of (15), so we define: 

  
    

     
    

    
    

     
    

    
    

 
    

    
 
  

So, 

 ̃     (  
       

    
       

    
 )
  
  

 ̃      (  
       

    
       

    
 )
  
  for all           . 

Now, considering the obtained values for  ̃     and  ̃      we have the following cases: 

1. If we have   
    

                   in the solution then, the interval LR fuzzy vector   ̃  

.  
    
    
    
 
/
  

 equal to the j-th component of the solution  ̃ for the system   ̃   ̃. 

2. If we have   
    

 , for all           in the solution then, the interval LR fuzzy vector   ̃  

.  
    
    
    

    
    
    

    
 
/
  

 equal to the j-th component of the solution  ̃  for the system 

  ̃   ̃. 
Algorithm 1 shows the proposed algorithm of this method.  

Algorithm 1 Algorithm to compute a solution to the system FLRCLS. 

 

1. Get A and   ̃. 
2. Compute      and      [18]. 

3. Solve quadratic programming problem (3.15) by the proposed algorithm in [16], and introduce 

fuzzy LR vector  ̃    .         
      

 
/ as a solution to the system (3.15). 

4. Using Definition 3.1 and calculate the solution of the system   ̃   ̃. 
5. Get  ̃ . If  ( ̃ )   , then  ̃  is an exact solution for the system   ̃   ̃ else  ̃  is an approximate 

solution for the system   ̃   ̃. 
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4. Examples and numerical results  

In the following examples, we show the superiority of our method compared to the proposed method in [28]. 

Example 4.1 Consider  

 

{
  ̃    ̃  (        )  

   ̃    ̃  (           )  
 

We have: 

0
  
   

1    [

    
     
    
     

] 

According to  ̃ we can write:  

 ̃      [
   (      )       
  (         )    

]   [
(       )  
(       )  

] 

So, we have: 

 ̃     

[
 
 
 
(      )  
(         )  
(       )  
(       )  ]

 
 
 
   

We find the following system: 

 

{
 

 
  ̃    ̃  (      )   

  ̃    ̃  (         )   

  ̃    ̃  (       )   

   ̃    ̃  (       )   

                                                                              (16) 

Then, by using [16] Q, f, and c are computed, we solve the quadratic programming problem (3.15) by 

using the interioir point algorithm with the initial point  

   ((      )  (      )  (     )  (     )  )
 . The solution of the system (16) as form  ̃    

( ̃    
   ̃     

 )
 
 can be calculated as follows:  

              ̃      [
 ̃ 
 ̃ 
]    [ 

(              )
  
 

(              )
  
 
]    [

(     )  
(      )  

]                                                 (17) 

             ̃       [
 ̃ 
 ̃ 
]    [ 

(              )
  

(              )
  

 ]    [
(     )  
(     )  

]                                                   (18) 

According to the values of the  ̃     and  ̃      and by using the Definition 3.1 we can write: 

 ̃  ( 
          )

  
 (       )    ̃  ( 

          )
  
 (        )                  (19)    

So,  ̃  ( ̃   ̃ ) with  ( ̃)   . Then  ̃ is an exact solution to the system. 

We report some numerical results inspired by [16, 29]. For our test problems, the coefficient matrix A in 

(2.3) must be generated in such a way that it is singular, nonsingular, full rank, and rank deficient and m and n 

are selected from the three following sets:  

      *           +        *              +       *          +  
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We investigated the gave results into two categories:  

1. Category 1 is generated completely randomly. 

2. Category 2 is generated such that corresponding crisp system of the        (this system is derived 

from the fuzzy environment) is solvable. 

Now, inspired by [16, 29], we compute the relative error for each solution (3). Next, we compare mean 

relative errors for an approximate solution in Tables 1 and 2. 

 
Table 1: The mean relative error for Category 1 

    

In Table 1, we compare the mean relative error to compute the approximate solution obtained by Algorithm 1 

in category 1 with three initial points, simple initial point (SIP) [16, 29], Karush–Kuhn–Tucker initial point 

(KKTIP) [16, 29], and local search initial point (LSIP) [16, 29]. Results show that SIP and LSIP methods have 

better performance in all different cases. Also, in Table 2, we compare the mean relative error to compute the 

approximate solution obtained by Algorithm 1 in category 2 with three initial points SIP, KKTIP, and LSIP. 

Results show that LSIP, SIP, and KKTIP methods have similar performance. 

 We give all results in MATLAB environment version 7.14.0 and run the algorithm on a notebook Intel Core 

i5-4200M 2.50GHZ with 6 GB of RAM. 

In addition, all problems are solved by Friedman [11] and Nassri and Gholami’s methods [28]. Based on the 

obtained results, it is found that the average relative error in the calculation of the approximate solution obtained 

by the Algorithm 1 for three different starting points is lower in all test tasks than that caused by other methods. 

 

 

 

 

 

 

 

Sizes Rank Scale Friedman Nasseri and Gholami SIP KKTIP LSIP 

  small 1.50E+01 3.25E+01 4.72E-06 4.12E-05 1.95E-08 

m = n Full rank medium 1.78E+02 4.32E+01 1.31E-07 5.20E-07 6.27E-08 

  large 2.45E+02 3.68E+03 4.36E-08 1.77E-08 1.17E-08 

  small 3.25E+02 2.78E+01 6.83E-08 1.82E-08 2.38E-08 

m = n Deficient rank medium 3.01E+02 1.50E+01 5.35E-07 3.88E-08 3.87E-08 

  large 2.56E+02 3.12E+01 9.88E-09 3.74E-07 2.89E-06 

  small 4.37E+02 5.30E+01 1.48E-07 8.20E-07 2.14E-06 

m < n Full rank medium 4.31E+02 5.63E+01 7.91E-08 7.57E-08 2.83E-07 

  large 2.06E+02 2.58E+01 7.75E-08 1.31E-07 3.14E-07 

  small 3.43E+02 1.96E+01 1.01E-07 1.80E-07 6.70E-08 

m < n Deficient rank medium 1.89E+02 2.39E+01 5.86E-08 6.55E-08 2.16E-07 

  large 3.98E+02 4.63E+01 3.21E-07 3.52E-07 2.35E-07 

  small 2.83E+02 3.85E+01 4.02E-09 2.29E-09 4.68E-09 

m > n Full rank medium 1.95E+02 2.65E+01 5.33E-09 9.70E-09 8.45E-09 

  large 2.54E+02 3.62E+01 6.39E-09 8.75E-09 2.50E-08 

  small 3.91E+02 2.98E+01 2.94E-09 2.59E-09 7.11E-10 

m > n Deficient rank medium 4.08E+02 4.78E+01 4.78E-10 1.28E-09 8.03E-09 

  large 1.02E+02 2.13E+01 7.50E-09 2.34E+08 2.01E-08 
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Table 2: The mean relative error for Category 2 

Sizes Rank Scale Friedman Nasseri and Gholami SIP KKTIP LSIP 

  small 2.23E+03 2.45E+04 1.47E-03 2.44E-09 1.29E-01 

m = n Full rank medium 2.36E+03 2.58E+04 1.11E-07 1.57E-06 6.90E-09 

  large 3.26E+03 4.15E+04 3.29E-08 2.98E-08 3.63E-07 

  small 3.95E+03 4.02E+04 1.99E-08 6.32E-08 3.10E-07 

m = n Deficient rank medium 3.62E+03 4.32E+04 3.02E-07 1.05E-06 1.59E-07 

  large 3.68E+03 4.98E+04 7.32E-08 1.57E-07 1.72E-08 

  small 4.15E+03 4.80E+04 4.03E-08 5.75E-08 2.23E-06 

m < n Full rank medium 4.75E+03 4.98E+04 1.26E-07 1.25E-07 1.26E-07 

  large 3.47E+03 3.87E+04 3.50E-07 3.35E-03 1.85E-07 

  small 5.39E+03 6.36E+04 5.88E-08 4.21E-08 6.62E-08 

m < n Deficient rank medium 2.95E+03 3.02E+04 1.56E-08 3.25E-08 3.90E-07 

  large 4.60E+03 4.25E+04 5.79E-07 5.78E-07 1.67E-07 

  small 2.60E+03 3.01E+04 4.87E-09 6.81E-09 1.00E-08 

m > n Full rank medium 2.31E+03 3.16E+04 5.46E-09 5.57E-09 1.28E-08 

  large 1.71E+03 2.13E+04 1.13E-08 9.23E-09 1.77E-08 

  small 1.69E+03 2.31E+04 2.72E-09 3.72E-09 1.60E-09 

m > n Deficient rank medium 5.16E+03 2.79E+04 2.05E-08 3.16E-09 8.50E-10 

  large 2.93E+03 3.18E+04 4.13E-09 2.27E-08 1.33E-08 

 

5.  Conclusions 

In this paper, we applied the least squares method to address LR fuzzy interval systems by converting an 

interval fuzzy number into two triangular fuzzy numbers. We minimized the distance between these two 

triangular fuzzy numbers to solve the fuzzy LR interval linear system. Essentially, we transformed the LR fuzzy 

interval linear system into a triangular fuzzy linear system, which we then solved using the least squares method 

as outlined in [18, 19]. Our analysis categorized the results into two groups: in category 1, where results were 

generated randomly, both the SIP and LSIP methods demonstrated superior performance across various 

scenarios. Conversely, in category 2, where results were derived from a corresponding crisp system, the LSIP, 

SIP, and KKTIP methods exhibited comparable performance. 
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