Portfolio Optimization in Iran Stock Market: Reinforcement Learning Approach
Subject Areas :
Labor and Demographic Economics
mahdi esfandiar
1
,
mohammadali keramati
2
,
Reza Gholami Jamkarani
3
,
Kashefy Neishabouri
4
1 - PhD student, Department of Industrial Management, Qom Branch, Islamic Azad University, Qom, Iran
2 - Associate Professor, Department of Industrial Management, Central Tehran Branch, Islamic Azad University, Tehran, Iran
3 - Assistant Professor, Department of Accounting, Qom Branch, Islamic Azad University, Qom, Iran
4 - Assistant Professor, Department of Industrial Management, Central Tehran Branch, Islamic Azad University, Tehran, Iran
Received: 2022-08-16
Accepted : 2022-10-19
Published : 2022-09-21
Keywords:
Portfolio optimization,
Tehran Stock Exchange,
reinforcement learning,
Algorithmic Trading,
Q Learning,
Abstract :
The concepts of portfolio optimization and diversification have become a tool for developing and understanding financial markets and financial decision making. The purpose of this paper is to use algorithmic trading with a focus on reinforcement learning approach in order to optimize the portfolio of selected stocks. This research is applied in terms of purpose and in terms of data type, quantitative and in terms of method, descriptive and exploratory and from the perspective of research plan, it is a post-event. The statistical population of this study was 672 stock exchange companies in March 1400, of which five companies (statistical sample) were selected. The sampling method was selected by one-step cluster and then purposeful selection of a share from inside each cluster and the study period was from 2017 to 2021. The findings of the research in the upward and downward periods of the market have shown that the reinforcement learning approach in bullish and bearish markets is significantly superior to the buy and maintain approach and has provided better performance, and the results are in line with the performance of algorithms in the stock markets.
References:
منابع
اصغری اسکوئی، محمد رضا، فلاحی، فرهاد، دوستیزاده، میثم، مشیری، سعید (۱۳۹۷). کاربرد یادگیری تقویتی در یک مدلسازی عاملمحور برای بازار عمدهفروشی برق ایران. پژوهشنامه اقتصاد انرژی ایران، 7(25): 1-40.
جونز، چارلز پی. (۱۳۹۱). مدیریت سرمایهگذاری. ترجمه: تهرانی، رضا، نوربخش، عسگر، تهران: نشر نگاه دانش.
رستگار، محمدعلی، دستپاک، محسن (1397). ارائه مدل معاملاتی با فراوانی زیاد همراه با مـدیریت پویـای سـبد سـهام بـه روش یادگیری تقویتی در بورس اوراق بهادار تهران. فصلنامه تحقیقات مالی، 20(۱): 16 -۱.
فلاحپور، سعید، حکیمیان، حسن (۱۳۹۸). بهینهسازی استراتژی معاملات زوجی با استفاده از روش یادگیری تقویتی، با بهکارگیری دیتاهای درونروزی در بورس اوراق بهادار تهران، فصلنامه تحقیقات مالی، 21 (1): ۳۴-۱۹.
گلارضی، غلامحسین، انصاری، حمیدرضا (1401). مقایسه عملکرد الگوریتمهای تکاملی NSGAII و SPEA2 در انتخاب پرتفولیوی بهینه در بورس اوراق بهادار تهران. فصلنامه تحقیقات مالی، 24 (3): 410-430.
نورویگ، پیتر و راسل، استوارت ج. (۱۳۹۳) هوش مصنوعی پیشرفته. مترجم: حسین حاجرسولیها، تهران: نشر نیازدانش.
Fu, TC., Chung, CP. & Chung, FL. (2013). Adopting genetic algorithms for technical analysis and portfolio management. Computers and Mathematics with Applications, 66 (10), 1743–1757. https://doi.org/ 1016/j.camwa. 2013.08.012.
Johnston, D. E. & Djurić, P. M. (2011). The science behind risk management. IEEE Signal Processing Magazine, 28(5), 26-36.
Kirilenko, A. A., & Lo, A. W. (2013). Moore's law versus Murphy’s Law: Algorithmic trading and its discontents. Journal of Economic Perspectives, 27(2): 51-72.
Markowitz H.M. (1952). Portfolio Selection. Journal of Finance, 7 (1): 77-91.
Mihatsch, O. & Neuneier, R. (2002). Risk-sensitive reinforcement learning. Machine learning, 49(2): 267-290.
Park, H., Sim, M. K., & Choi, D. G. (2020). An intelligent financial portfolio trading strategy using deep Q-learning. Expert Systems with Applications, 158.
Reeves, M., Moose, S., & Venema, T. (2014). The growth share matrix. BCG–The Boston Consulting Group.
Skabar, A., & Cloete, I. (2002). Neural networks, financial trading and the efficient markets hypothesis. In ACSC: 241-249.
Sutton, R. S. & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT Press.
Treleaven, P., Galas, M. & Lalchand, V. (2013). Algorithmic trading review. Communications of the ACM, 56(11): 76-85.
Vogiatzis, G. & Garcia, N. (2019). Learning non-metric visual similarity for image retrieval. Image and Vision Computing, 82: 18-25.
Zhang, Z., Zohren, S., & Roberts, S. (2020). Deep reinforcement learning for trading. The Journal of Financial Data Science, 2(2): 25-40.
_||_