Design a Model for Measuring the Dynamics Volatility Connectedness of Tehran Stock Exchange and Global Markets
Subject Areas : Labor and Demographic EconomicsNasser Gholami 1 * , Teymor Mohammadi 2 , abdolrasoul ghasemi 3
1 - PhD student in Oil and Gas Economics, Allameh Tabatabai University, Tehran, Iran
2 - Associate Professor, Department of Energy Economics, Allameh Tabatabai University, Tehran, Iran
3 - Associate Professor, Department of Theoretical Economics, Allameh Tabatabai University, Tehran, Iran
Keywords: Financial Markets, D53, dynamics connectedness, Keywords: Tehran Stock Exchange, variance decomposition approach. JEL:C58,
Abstract :
The aim of this article is to measure the dynamics connectedness of Tehran stock market with stock exchanges of selected countries from the Middle East and China, oil and gold markets, the dollar index and the euro-dollar and yuan-dollar. To this end, a variance decomposition approach has been used to measure connectedness of markets between January 2008 and the end of July 2019. The findings show that the variance of forecast errors in most of markets are due to the shocks of those markets themselves. The Qatari Stock Exchange has a significant impact on Saudi and UAE stock exchanges. As the time horizon increases, Brent's oil market will be more influential than other markets, and this market will be more affected by the stock exchanges of the Arab countries and the Shanghai Composite. According to the results, investing in the Tehran Stock Exchange and the yuan-dollar exchange rate due to insignificant dynamics connectedness with other markets is recommended to hedge risk.
منابع
- ساجدی، امیر، ساجدی، سیناز (۱۳۹۸). خروج آمریکا از برجام و تلاطم در اقتصاد ایران. فصلنامه مطالعات روابط بینالملل. ۱۲ (۴۶): ۱۲۳-۱۵۵.
- سید حسینی، سید محمد، ابراهیمی، سید بابک، باباخانی، مسعود (۱۳۹۳). مدل سرایت تلاطم همبستگی شرطی ثابت با حافظه بلندمدت شواهدی از بازار سهام تهران و دبی. فصلنامه دانش سرمایهگذاری، ۳ (۱۱): ۲۵-۴۶.
- صادقی شاهدانی، مهدی، محسنی، حسین (۱۳۹۲). تأثیر قیمت نفت بر بازده بازار سهام: شواهدی از کشورهای صادرکننده نفت خاورمیانه. فصلنامه پژوهشهای سیاستگذاری و برنامهریزی انرژی، ۱ (۳): ۱-۱۶.
- صمدی، سعید، سرخوش سرا، علی، امینی دره وزان، امید (1397). اثرات نامتقارن شوکهای قیمت نفت بر نرخ بهره و رشد اقتصادی ایران: مدل VAR غیرخطی. فصلنامه علمی - پژوهشی مدلسازی اقتصادی، 12(41): 27-52.
- کیومرث شهبازی، ابراهیم رضایی، یاور صالحی، (۱۳۹۲). تأثیر شوکهای قیمت نفت بر بازدهی سهام در بورس اوراق بهادار تهران: رهیافت SVAR. فصلنامه دانش مالی تحلیل اوراق بهادار، ۶ (۱۸): ۱۲۵-۱۳۶.
- ممیپور، سیاب و فعلی، عاطفه (1396). بررسی سرریز تلاطم قیمت نفت بر بازدهی صنایع منتخب در بازار بورس اوراق بهادار تهران: رویکرد تجزیه واریانس. پژوهشهای اقتصاد پولی.
- Acharya, V. V., Pedersen, L. H., Philippon, T., & Richardson, M. (2017). Measuring systemic risk. The Review of Financial Studies, 30(1): 2-47.
- Antonakakis, N., & Kizys, R. (2015). Dynamic spillovers between commodity and currency markets. International Review of Financial Analysis, 41: 303-319.
- Billio, M. Getmansky, M., Lo, A. W., & Pelizzon, L. (2012). Econometric measures of connectedness and systemic risk in the finance and insurance sectors. Journal of financial economics, 104(3), 535-559.
- Diebold, F. X., & Yilmaz, K. (2012). Better to give than to receive: Predictive directional measurement of volatility spillovers. International Journal of Forecasting, 28(1): 57-66.
- Diebold, F. X., & Yılmaz, K. (2014). On the network topology of variance decompositions: Measuring the connectedness of financial firms. Journal of Econometrics, 182(1): 119-134.
- Koop, G., Pesaran, M. H., & Potter, S. M. (1996). Impulse response analysis in nonlinear multivariate models. Journal of econometrics, 74(1): 119-147.
- Maghyereh, A. I., Awartani, B., & Bouri, E. (2016). The directional volatility connectedness between crude oil and equity markets: New evidence from implied volatility indexes. Energy Economics, 57: 78-93.
- Mensi, W. Hkiri, B., Al-Yahyaee, K.H., and Kang, S.H. (2018). Analyzing time–frequency co-movements across gold and oil prices with BRICS stock markets: A VaR based on wavelet approach. International Review of Economics & Finance, 54: 74-102.
- Lundgren, A. I., Milicevic, A. Uddin, G. S., & Kang, S. H. (2018). Connectedness network and dependence structure mechanism in green investments. Energy Economics, 72: 145-153.
- Parkinson, M. (1980). The extreme value method for estimating the variance of the rate of return. Journal of business, 61-65.
- Pesaran, H. H., & Shin, Y. (1998). Generalized impulse response analysis in linear multivariate models. Economics letters, 58(1): 17-29.
- Singh, V. K., Nishant, S., & Kumar, P. (2018). Dynamic and directional network connectedness of crude oil and currencies: Evidence from implied volatility. Energy Economics, 76: 48-63.
- Tansuchat, R., Chang, C. L., & McAleer, M. (2010). Conditional correlations and volatility spillovers between crude oil and stock index returns. Available at SSRN 1534043.
- Yoon, S. M., Al Mamun, M. Uddin, G. S., & Kang, S. H. (2019). Network connectedness and net spillover between financial and commodity markets. The North American Journal of Economics and Finance, 48: 801-818.
_||_