Artificial intelligence investment and the jobs paradox: unpacking substitution versus creation in 20 leading economies
Subject Areas : Economic Development, Innovation, Technological Change, and Growth
Younes Nademi
1
*
,
Ramin Khochiany
2
,
Reza Maaboudi
3
1 - Department of Economics, Faculty of Humanities, Ayatollah Boroujerdi University, Boroujerd, Iran., Zagros Data Science Research Group, Ayatollah Boroujerdi University, Boroujerd, Iran. (Corresponding Author), Younesnademi@abru.ac.ir
2 - Department of Economics, Faculty of Humanities, Ayatollah Boroujerdi University, Boroujerd, Iran., Zagros Data Science Research Group, Ayatollah Boroujerdi University, Boroujerd, Iran. khochiany@abru.ac.ir
3 - Department of Economics, Faculty of Humanities, Ayatollah Boroujerdi University, Boroujerd, Iran., Zagros Data Science Research Group, Ayatollah Boroujerdi University, Boroujerd, Iran. maaboudi@abru.ac.ir
Keywords: Artificial Intelligence, Unemployment Rate, Dynamic Simultaneous-Equations Panel, Generalized Method of Moments JEL Classification: J64, O33, C23,
Abstract :
This article investigates the dual effects of private-sector investment in artificial intelligence (AI) on labor markets and unemployment in leading economies. We compile a panel dataset of the twenty countries that attracted the largest volumes of AI-related venture capital between 2017 and 2023. A two-equation simultaneous system is estimated using the system-GMM method, capturing two distinct channels: (i) the productivity channel, reflecting labor substitution by AI-enabled capital, and (ii) the job-creation channel, driven by the expansion of AI-complementary industries and services and the re-engineering of value chains. Our results indicate that, in the absence of compensatory policies, productivity gains tend to increase unemployment, while direct AI investment reduces it; the net outcome depends on the relative strength of these forces in each country. Robustness checks, including instrument validity and stability tests, confirm the reliability of the findings. The results underscore the importance of digital up-skilling programs, innovation ecosystems, curricular reforms, and targeted support for technology-oriented start-ups to guide technological change toward sustainable job creation. Cross-country heterogeneity in absorptive capacity and institutional quality further explains the variation in effects, with economies possessing mature innovation systems better able to mitigate substitution effects and achieve a balanced, entrepreneurial equilibrium between labor and technology.
- هارونکلایی، کاظم و برزگر، قدرت¬الله (1402). تبیین متغیرهای مالی مؤثر در پیشبینی احیای مالی با استفاده از رویکرد هوش مصنوعی. مدلسازی اقتصادی، 17(61)، 104-89..
- محمدی، حسین، هژبرکیانی، کامبیز، امامی میبدی، علی و شهرستانی، حمید (1404). بررسی تأثیر انتقال تکنولوژی ناشی از سرمایهگذاری مستقیم خارجی بر تغییرات بهرهوری در صنعت ایران. مدلسازی اقتصادی، 19(1)، 125-146.
- Çetin, C. N., & Kutlu, E. (2025). The impact of artificial intelligence on employment: A panel data analysis for selected countries. Ekonomi Politika ve Finans Araştırmaları Dergisi, 10(1), 202–233.
- Dauth, W., Findeisen, S., Suedekum, J., & Woessner, N. (2018). Adjusting to robots: Worker-level evidence. Opportunity & Inclusive Growth Institute Working Paper (No. 13), 1–50.
- David, B. (2017). Computer technology and probable job destructions in Japan: An evaluation. Journal of the Japanese and International Economies, 43, 77–87.
- Ernst, E., Merola, R., & Samaan, D. (2019). Economics of artificial intelligence: Implications for the future of work. IZA Journal of Labor Policy, 9(1), 1–35.
- Faluyi, S. E. (2025). AI and job market: Analysing the potential impact of AI on employment, skills, and job displacement. African Journal of Marketing Management, 17(1), 1–8.
- Frank, M. R., Ahn, Y. Y., & Moro, E. (2025). AI exposure predicts unemployment risk: A new approach to technology-driven job loss. PNAS Nexus, 4(4), pgaf107. https://doi.org/10.48550/arXiv.2308.02624
- Frey, C. B., & Osborne, M. A. (2017). The future of employment: How susceptible are jobs to computerization. Technological Forecasting and Social Change, 114, 254–280.
- Georgieff, A., & Hyee, R. (2022). Artificial intelligence and employment: New cross-country evidence. Frontiers in Artificial Intelligence, 5, 832736.
- Gries, T., & Naudé, W. (2018). Artificial intelligence, jobs, inequality and productivity: Does aggregate demand matter? IZA Discussion Paper (No. 12005).
- Guliyev, H. (2022). The relationship between artificial intelligence, big data, and unemployment: New insights from dynamic panel data model of the G7 countries. SSRN. https://doi.org/10.2139/ssrn.4177241
- Guo, X., Cheng, Z., & Pavlou, P. A. (2024). Skill-biased technical change, again? Online gig platforms and local employment. Information Systems Research. Advance online publication. https://doi.org/10.1287/isre.2022.0307
- Harounkolai, K., & Barzegar, G. (2023). Explanation of financial variables effective in predicting turnaround: An artificial intelligence approach. Quarterly Journal of Economic Modelling, 17(1), 89–103. https://doi.org/10.30495/eco.2023.1982463.2737 [in Persian]
- Kjosevski, J. (2025). Artificial intelligence and its impact on unemployment: A comparative analysis of old and new EU member states (Version 1). Research Square. https://doi.org/10.21203/rs.3.rs-6641180/v1
- Koch, M., Manuylov, I., & Smolka, M. (2021). Robots and firms. The Economic Journal, 131(638), 2553–2584.
- Martens, B., & Tolan, S. (2018). Will this time be different? A review of the literature on the impact of artificial intelligence on employment, incomes and growth [Working paper]. https://hdl.handle.net/10419/202236
- Masoud, N. (2025). Artificial intelligence and unemployment dynamics: An econometric analysis in high-income economies. Technological Sustainability, 4(1), 30–50.
- Mohammadi, H., Kiani, K. H., Emami Meibodi, A., & Shahrestani, H. (2025). Investigating the impact of technology transfer resulting from foreign direct investment on productivity changes in Iranian industry. Economic Modeling, 19(1), 125-146. [in Persian].
- Nademi, Y., & Sedaghat Kalmarzi, H. (2025). Breaking the unemployment cycle using the circular economy: Sustainable jobs for sustainable futures. Journal of Cleaner Production, 488, 144655.
- Ngo, P., Das, J., Ogle, J., Thomas, J., Anderson, W., & Smith, R. N. (2014, September). Predicting the speed of a wave glider autonomous surface vehicle from wave model data. In 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 2250–2256). IEEE.
- Omri, A., Omri, H., & Afi, H. (2025). Exploring the impact of AI on unemployment for people with disabilities: Do educational attainment and governance matter? Frontiers in Public Health, 13, 1559101.
- Qin, M., Wan, Y., Dou, J., & Su, C. W. (2024). Artificial intelligence: Intensifying or mitigating unemployment? Technology in Society, 79, 102755.
- Susskind, R., & Susskind, D. (2016). Technology will replace many doctors, lawyers, and other professionals. Harvard Business Review.
- Wang, K. H., & Lu, W. C. (2025). AI-induced job impact: Complementary or substitution? Empirical insights and sustainable technology considerations. Sustainable Technology and Entrepreneurship, 4(1), 100085.