Using Biomimicry Knowledge to Improve the Efficiency of Building Envelopes Inspired by the Morphology and Moisture Absorption Mechanism of the Cactus Plant (Case Study: High-Rise Office Building in Tehran)
Subject Areas : Computational design and digital architectureAlireza Karimpour 1 , Elahe Karami 2 , Arezo Malek 3
1 - Department of Architecture, Faculty of Art and Architecture, Islamic Azad University South Tehran Branch.
2 - Department of Architecture, Faculty of Art and Architecture, Islamic Azad University West Tehran Branch.
3 - Department of Architecture, Faculty of Art and Architecture, Islamic Azad University West Tehran Branch.
Keywords: Biomimicry, Building Envelope, Cactus, Simulation, Daylight, Glare,
Abstract :
One of the architectural design components that affects energy consumption and environmental comfort conditions is building envelopes. Among today's solutions to improve the efficiency of building envelopes is to establish a structural relationship between architecture, environment and biology. The focus of this study is on the characteristics of the cactus plant in water absorption and its purpose is to innovate in pattern design with the ability to save energy and improve lighting quality and user satisfaction with the light conditions of the space, by using Biomimicry in Building Envelope design. The present research has been done in two steps; in the first step, data collection in relation to the cactus plant was done by studying documentary-research sources and data were analyzed by descriptive-analytical method. Then, using the results of the analysis, the building shell model is designed and simulated. In the second step, a building model is used as a basis for simulation and the amount of brightness and glare from daylight, using the Climate Studio plugin, once in normal mode and again when the shell was on the building model was simulated and calculated.
The results showed that by examining the mechanism of Water absorption and storage in the cactus and the equivalence of trichomes, epidermis and mucosa of this plant, achieved a model for building shells based on the maximum absorption of rainwater and moisture at dawn, as well as shading the facade of the building. Although according to the simulations, the proposed model reduces the index (sDA) by 1.4%, but in contrast, reduces the index (ASE) by 48%, which is a significant amount of improving indoor user comfort.
- رزازی، سمیرا و مظفری، فاطمه. (1397). پوسته¬های سازگار و انطباق¬پذیر ساختمان با الگوپذیری از گیاهان در طبیعت. معماری سبز، 4(11)، 1-18.
- کریم¬پور، علیرضا؛ دیبا، داراب و اعتصام، ایرج. (1396). تحلیل تاثیر آفتابگیرهای داخلی بر مصرف انرژی با استفاده از مدل¬های شبیه¬سازی. هویت شهر، 11(30)، 17-30.
- کریم¬پور، علیرضا؛ دیبا، داراب و اعتصام، ایرج. (1398). تحلیل¬های اقتصادی و ارزیابی میزان مصرف انرژی بر اساس نوع و نسبت پنجره¬ها با استفاده از مد¬ل¬های شبیه¬سازی. هویت شهر، 13(39)، 19-34.
- گلابچی، محمود و خرسندنیکو، مرتضی. (1393). معماری بایونیک. تهران: انتشارات دانشگاه تهران.
- شفوی¬مقدم، نسترن؛ تحصیلدوست، محمد و زمردیان، زهراسادات. (1398). بررسی کارایی شاخص¬های نور روز در ارزیابی کیفیت آسایش بصری کاربران (مطالعۀ موردی: فضاهای آموزشی دانشکده¬های معماری شهر تهران). مطالعات معماری ایران، 8(16)، 205-228.
- Ali, G., Abbas, S. & Qamar F. M. (2013). How effectively low carbon society development models contribute to climate change mitigation and adaptation action plans in Asia. Renewable and Sustainable Energy Reviews, 26, 632-638.
- Al-Obaidi, K., Ismail, M., Rahman, A. (2014). Design and performance of a novel innovative roofing system for tropical landed houses. Energy Conversion and Management, 85, 488-504.
- Al-Obaidi, K., Ismail, M., Hussein, H. & Abdul Rahman, A. (2017). Biomimetic building skins: An adaptive approach. Renewable and Sustainable Energy Reviews, 79, 1472-1491.
- Armstrong, R. (2012). Living architecture: how synthetic biology can remake our cities and reshape our lives. Kindle Single: TED books.
- Badarnah, L. & Kadri, U. (2015). A methodology for the generation of biomimetic design concepts. Architectural Science Review, 58(2), 120-133.
- Badarnah, L. (2018). Environmental adaptation of buildings through morphological differentiation. Conference on Advanced Building Skins. Bern: Advanced Building Skins GmbH.
- Butt, H. J., Graf, K. & Kappl, M. (2006). Physics and Chemistry of Interfaces. New Hersey: Wile.
- Chaudhury, M. K. & Whitesides, G. M. (1992). How to make water run uphill. Science, 256(5063), 1539-1541.
- Cohen, Y. H., Reich, Y. & Greenberg, S. (2015). What can we learn from biological systems when applying the law of system completeness? Procedia Eng, 131, 104-14.
- Fiorito F, Sauchelli M, Arroyo D, Pesenti M, Imperadori M, Masera G, Ranzi G. (2016). Shape morphing solar shadings: a review. Renewable and Sustainable Energy Reviews, 55, 863-884.
- Garcia-Holguera, M., Clark, O. G., Sprecher, A. & Gaskin, S. (2015). Ecosystem biomimetics for resource use optimization in buildings. Building Research & Information, 44(3), 1-16.
- Hasselaar, B. L. H. (2009). Climate adaptive skins: towards the new energy-efficient façade. WIT Transactions on Ecology and the Environment, 99, 351-360.
- Helms, M., Vattam, S. S. & Goel, A. K. (2009). Biologically inspired design: process and products. Design Studies, 30(5), 606-622.
- Ju, J., Bai, H., Zheng, Y., Zhao, T., Fang, R. & Jiang, L. (2012). Multi-structural and multi-functional integrated fog collection system in cactus. Nature Communications, 3(1247).
- Kim, K., Seo, E., Chang, S. K., Park, T. J., Lee, S. J. (2016). Novel water filtration of saline water in the outermost layer of mangrove roots. Scientific Reports, 6(20426).
- Kim, K., Kim, H., Park, S. H. & Lee. S. L. (2017). Hydraulic Strategy of Cactus Trichome for Absorption and Storage of Water under Arid Environment, Frontiers in Plant Science, 8(1777): 1-8.
- Knippers, J. & Speck, T. (2012). Design and construction principles in nature and architecture. Bioinspiration & Biomimetics, 7(1), 015002.
- Koch, K. & Barthlott, W. (2009). Superhydrophobic and superhydrophilic plant surfaces: an inspiration for biomimetic materials. Philosophical Transactions: Mathematical, Physical and Engineering Sciences, 367(1893), 1487-1509.
- Lafuma, A. & Quéré, D. (2003). Superhydrophobic states. Nature Materials, 2, 457-460.
- Lopez, M., Rubio, R., Martín, S., Croxford, B. & Jackson, R. (2015). Active materials for adaptive architectural envelopes based on plant adaptation principles. Journal of Facade Design and Engineering, 3(1), 27-38.
- Lopez, M., Rubio, R., Martín, S., Croxford, B. (2017). How plants inspire façades. From plants to architecture: biomimetic principles for the development of adaptive architectural envelopes. Renewable and Sustainable Energy Reviews, 67, 692–703.
- Lurie-Luke, E. (2014). Product and technology innovation: what can biomimicry inspire? Biotechnology Advances, 32(8), 1494-1505.
- Malik, F. T., Clement, R. M., Gethin, D. T., Krawszik, W. & Parker, A. R. (2014). Nature's Moisture Harvesters: a Comparative Review. Bioinspiration & Biomimetics, 9(3), 031002.
- Magner, L. N. (2002) A History of the Life Sciences, Revised and Expanded. Florida: CRC Press.
- Manukyan, G., Oh, J., Van Den Ende, D., Lammertink, R. G. & Mugele, F. (2011). Electrical switching of wetting states on superhydrophobic surfaces: a route towards reversible Cassie-to-Wenzel transitions. Physical Review Letters, 106, 014501.
- Nobel, P. S. (2003). Environmental Biology of Agaves and Cacti. New York, NY: Cambridge University Press.
- Nasrollahi, F., Wehage, P., Shahriari, E., & Tarkashvand, A. (2013). Energy Efficient Housing for Iran Pilot Buildings in Hashtgerd New Town. Berlin: Universitäts-verlag der TU Berlin.
- Omrany, H., Ghaffarianhoseini, A., Ghaffarianhoseini, A., Raahemifar, K. & Tookey, J. (2016). Application of passive wall systems for improving the energy efficiency in buildings: A comprehensive review. Renewable and Sustainable Energy Reviews, 62, 1252-1269.
- Reap, J., Baumeister, D. & Bras, B. (2005). Holism, Biomimicry and Sustainable Engineering. International Mechanical Engineering Congress and Exposition. Orlando: ASME.
- Royall, E. (2010). Defining biomimicry: architectural applications in systems and products. UTSoA-Seminar in Sustainable Architecture. Austin: The University of Texas at Austin.
- Ürge-Vorsatz, D., Cabeza, L. F, Serrano, S., Barreneche, C., Petrichenko, K. (2015). Heating and cooling energy trends and drivers in buildings. Renewable and Sustainable Energy Reviews, 41, 85-98.
- Vincent, J., Bogatyreva, O., Bogatyrev, N., Bowyer, N. & Pahl, K. (2006). Biomimetic: it’s Practiceandtheory. Jornal of the Royal Society Interface, 3(9), 471-482.
- Vogel, S. (2013). Comparative Biomechanics: Life's Physical World. New Jersey: Princeton University Press.
- Waring, R. & Running, S. (1978). Sapwood water storage: its contribution to transpiration and effect upon water conductance through the stems of old-growth Douglas-fir. Plant, Cell & Environment. 1(2), 131-140.
- Zari, M. P. (2007). Biomimetic approaches to architectural design for increased sustainability. The SB07 NZ Sustainable Building Conference. Auckland: New Zealand Victoria University.
- Zari, M. P. (2009). An architectural love of the living: bio-inspired design in the pursuit of ecological regeneration and psychological wellbeing. WIT Transactions on Ecology and the Environment, 120, 293-302.
- Zheng, Y., Bai, H., Huang, Z., Tian, X., Nie, F. Q., Zhao, Y., Zhai, J. & Jiang, L. (2010). Directional water collection on wetted spider silk. Nature. 463(7281), 640-643.