A brief overview of nanoreactors: types and applications
Subject Areas : OthersAbdulhamid Dehghani 1 , Milad Ghezelsofloo 2 , Leila Moradi 3 *
1 - Department of Organic Chemistry, Faculty of Chemistry, Kashan University, Kashan, Iran
2 - Department of Organic Chemistry, Faculty of Chemistry, Kashan University, Kashan, Iran
3 - Department of Organic Chemistry, Faculty of Chemistry, Kashan University, Kashan, Iran
Keywords: Self-assembled nanoreactors, Nanoreactors, Natural and synthetic nanoreactors,
Abstract :
A very challenging concern of researchers in the last century has always been the production of chemicals at the nanometer scale, and at the same time, chemists have tried to understand how basic chemical principles change when systems are confined to nanoscale spaces. A long-pursued goal in nanoscience is to capture the essence of structures and functions of complex biological systems, as epitomised by cells, by creating artificial nanostructures in a rational manner. For this purpose, different strategies have been proposed and experimentally investigated. In the meantime, nanoreactors have been proposed as an emerging phenomenon and a new practical and scientific strategy for the production of nanomaterials. Nanoreactors change the basic chemical nature of molecules and moieties within them, and alter how they behave in chemical reactions. In fact, nanoreactors are very small chambers of nanometer size that protect the catalysts or the drug that is placed as a guest inside the nanoreactor structure from environmental influences, and they enclose reactants and catalysts in a small space for a long time, and as a result, they show great potential for improving chemical processes.The important point is that in addition to performing a wide range of chemical reactions, the space inside nanoreactors is a suitable environment for the production of various nanostructures. In this article, nanoreactors and some of their applications are briefly introduced.
1. D.M. Vriezema, M. Comellas Aragonès, J.A. Elemans, J.J. Cornelissen, A.E. Rowan, R.J. Nolte, Chem. Rev 105, 1445-1490 (2005)
2. B. Vafakish, L.D. Wilson, Polysaccharides 2, 168-186 (2021)
3. K. Renggli, P. Baumann, K. Langowska, O. Onaca, N. Bruns, W. Meier, Adv. Funct. Mater 21, 1241-1259 (2011)
4. S.H. Petrosko, R. Johnson, H. White, C.A. Mirkin, J. Am. Chem. Soc 138, 7443-7445 (2016)
5. C. Deraedt, D. Astruc, Coord. Chem. Rev 324, 106-122 (2016)
6. M. Comellas-Aragonès, H. Engelkamp, V.I. Claessen, N.A. Sommerdijk, A.E. Rowan, P.C. Christianen, R.J. Nolte, Nat. Nanotechnol 2, 635-639 (2007)
7. J.W. Wilkerson, S.O. Yang, P.J. Funk, S.K. Stanley, B.C. Bundy, N Biotechnol 44, 59-63 (2018)
8. A. Liu, C.H.H. Traulsen, J.J. Cornelissen, ACS Catal 6, 3084-3091 (2016)
9. D. Ingert, M.P. Pileni, Adv. Funct. Mater 11, 136-139 (2001)
10. Y. Liu, J. Wang, M. Zhang, H. Li, Z. Lin, ACS nano 14, 12491-12521 (2020)
11. D. Zhang, C. Chen, X. Wang, G. Guo, Y. Sun, Part Part Syst Charact 35, 1700413 (2018)
12. S.M. Kim, M. Jeon, K.W. Kim, J. Park, L.S. Lee, J. Am. Chem. Soc 135, 15714-15717 (2013)
13. J.H. Swisher, L. Jibril, S.H. Petrosko, C.A. Mirkin, Nat. Rev. Mater 7, 428-448 (2022)
14. M.T. De Martino, L.K. Abdelmohsen, F.P. Rutjes, J.C. van Hest, Beilstein J. Org. Chem 14, 716-733 (2018)
15. R. Syah, M. Zahar, E. Kianfar, Int. J. Chem. React. Eng 19, 981-1007 (2021)
16. Z. Yu, N. Ji, X. Li, R. Zhang, Y. Qiao, J. Xiong, X. Lu, Angew. Chem., Int. Ed 62, e202213612 (2023)
17. Q. Yang, D. Han, H. Yang, C. Li, Chem. Asian J 3, 1214-1229 (2008)
18. N. Chen, S. Li, X. Li, Q. Zhan, L. Li, L. Long, X. Yuan, J. Chem. Eng 429, 132305 (2022)
19. J. Liu, S.Z. Qiao, J.S. Chen, X.W.D. Lou, X. Xing, G.Q.M. Lu, ChemComm 47, 12578-12591 (2011)
20. V. Balasubramanian, O. Onaca, R. Enea, D.W. Hughes, C.G. Palivan, Expert Opin Drug Deliv 7, 63-78 (2010)
21. A. Ranquin, W. Versées, W. Meier, J. Steyaert, P. Van Gelder, Nano Lett 5, 2220-2224 (2005)
22. S. Mei, X. Xu, R.D. Priestley, Y. Lu, Chem. Sci 11, 12269-12281 (2020)
23. A. Botos, J. Biskupek, T.W. Chamberlain, G.A. Rance, C.T. Stoppiello, J. Sloan, A.N. Khlobystov, J. Am. Chem. Soc 138, 8175-8183. (2016)
24. M.C.M. Van Oers, F.P.J.T. Rutjes, J.C.M. Van Hest, urr. Opin. Biotechnol 28, 10-16 (2014)
25. U. Díaz, A. Corma, Eur. J. Chem.24, 3944-3958 (2018)
26. M. Kuepfert, A.E. Cohen, O. Cullen, M. Weck, Eur. J. Chem 24, 18648-18652 (2018)
27. J. Li, J. Huang, Y. Jiang, L. Wu, Y. Deng, Adv. Funct. Mater 33, 2212317 (2023)
28. M. Kaur, B. Singh, Chem. Sci. J 9, 1000192 (2018)
29. S. Lu, W.W. Li, D. Rotem, E. Mikhailova, H. Bayley, Nat. Chem 2, 921-928 (2010)
30. H. Ren, C.G. Cheyne, A.M. Fleming, C.J. Burrows, H.S. White, J. Am. Chem. Soc 140, 5153-5160 (2018)
31. W.J. Ramsay, N.A. Bell, Y. Qing, H. Bayley, J. Am. Chem. Soc 140, 17538-17546 (2018)
32. Y.Q. Tan, B. Xue, W.S. Yew, Molecules 26, 1389 (2021)
33. H. Kirst, B.H. Ferlez, S.N. Lindner, C.A. Cotton, A. Bar-Even, C.A. Kerfeld, Proc. Natl. Acad. Sci 119, e2116871119 (2022)
34. V. Balasubramanian, A. Poillucci, A. Correia, H. Zhang, C. Celia, H.A. Santos, ACS Biomater. Sci. Eng 4, 1471-1478 (2018)
35. T.G. Edwardson, M.D. Levasseur, S. Tetter, A. Steinauer, M. Hori, D. Hilvert, Chem. Rev 122, 9145-9197 (2022)
36. N.P. Kamat, J.S. Katz, D.A. Hammer, J. Phys. Chem 2, 1612-1623 (2011)
37. C.G. Palivan, O. Fischer-Onaca, M. Delcea, F. Itel, W. Meier, Chem. Soc. Rev 41, 2800-2823 (2012)
38. Y.M. Mohan, K. Lee, T. Premkumar, K.E. Geckeler, Polymer 48, 158-164 (2007)
39. A. Larrañaga, M. Lomora, J.R. Sarasua, C.G. Palivan, A. Pandit, Prog. Mater. Sci 90, 325-357 (2017)
40. F. Rodrigues, T. Georgelin, G. Gabant, B. Rigaud, F. Gaslain, G. Zhuang, M. Jaber, J. Phys. Chem 10, 4192-4196 (2019)
41. M. Stöter, B. Biersack, N. Reimer, M. Herling, N. Stock, R. Schobert, J. Breu, Chem. Mater 26, 5412-5419 (2014)
42. J. Bain, S.S. Staniland, Phys. Chem. Chem. Phys 17, 15508-15521 (2015)
43. S.F. Van Dongen, W.P. Verdurmen, R.J. Peters, R.J. Nolte, R. Brock, J.C. Van Hest, Angew. Chem 122, 7371-7374 (2010)
44. B. Thingholm, P. Schattling, Y. Zhang, B. Städler, Small 12, 1806-1814 (2016)
45. M. Godoy‐Gallardo, M.J. York‐Duran, L. Hosta‐Rigau, Adv. Healthc. Mater 7, 1700917 (2018)
46. J.S. Plegaria, C.A. Kerfeld, Curr. Opin. Biotechnol 51, 1-7 (2018)
47. C.R. Gonzalez‐Esquer, S.E. Newnham, C.A. Kerfeld, Plant J 87, 66-75 (2016)
48. A. de la Escosura, R.J. Nolte, J.J. Cornelissen, J. Mater. Chem 19, 2274-2278 (2009)
49. K.T. Kim, S.A. Meeuwissen, R.J. Nolte, J.C. van Hest, Nanoscale 2, 844-858 (2010)
50. B. Maity, K. Fujita, T. Ueno, Curr Opin Chem Biol 25, 88-97 (2015)
51. L. Zakharova, Y. Kudryashova, A. Ibragimova, E. Vasilieva, F. Valeeva, E. Popova, A. Konovalov, J. Chem. Eng 185, 285-293 (2012)
52. W.C. e Vries, B.J. Ravoo, Supramolecular Chemistry in Water 375-411 (2019)
53. Y.D. Tretyakov, A.V. Lukashin, A.A. Eliseev, Russ. Chem. Rev 73, 899-921 (2004)
54. G. Chen, X.A. Fang, Q. Chen, J.G. Zhang, Z. Zhong, J. Xu, G. Ouyang, Adv. Funct. Mater 27, 1702126 (38)
55. S. Ordanini, F. Cellesi, Pharmaceutics 10, 209 (2018)
56. T. Nishimura, S. Hirose, Y. Sasaki, K. Akiyoshi, J. Am. Chem. Soc 142, 154-161 (2019)
57. L. Jing, X. Zhang, R. Guan, H. Yang, Catal. Sci. Technol 8, 2304-2311 (2018)
58. G. Song, Y. Chen, C. Liang, X. Yi, J. Liu, X. Sun, Z. Liu, Adv Mater 28, 7143-7148 (2016)
59. J. Gaitzsch, D. Appelhans, L. Wang, G. Battaglia, B. Voit, Angew. Chem., Int. Ed 51, 4448-4451 (2012)
60. M. Fang, P.S. Grant, M.J. McShane, G.B. Sukhorukov, V.O. Golub, Y.M. Lvov, Langmuir 18, 6338-6344 (2002)
61. S.B. Timmermans, J.C. van Hest, Curr Opin Colloid Interface 35, 26-35 (2018)
62. T.S. Koblenz, J. Wassenaar, J.N. Reek, Chem. Soc. Rev 37, 247-262 (2008)
63. P. Khullar, V. Singh, A. Mahal, H. Kumar, G. Kaur, M.S. Bakshi, J. Phys. Chem. B 117, 3028-3039 (2013)
64. S. Sadjadi, Academic Press 257-303 (2016)
65. D. Bonifazi, S. Mohnani, A. Llanes‐Pallas, Eur. J. Chem 15, 7004-7025 (2009)
66. K. Chaudhary, K. Prakash, D.T. Masram, Appl. Surf. Sci 509, 144902 (2020)
67. J. Li, H.C. Zeng, Angew. Chem., Int. Ed. 44, 4342-4345 (2005)
68. X. Huang, C. Guo, J. Zuo, N. Zheng, G.D. Stucky, Small 5, 361-365 (2009)
69. X. Lu, X. Bian, G. Nie, C. Zhang, C. Wang, Y. Wei, J. Mater. Chem. 22, 12723-12730 (2012)
70. H. Miyamura, R.G. Bergman, K.N. Raymond, F.D. Toste, J. Am. Chem. Soc 142, 19327-19338 (2020)
71. J. Wei, K. Li, H. Yu, H. Yin, M.A. Cohen Stuart, J. Wang, S. Zhou, ACS omega 5, 6852-6861 (2020)
72. S. Singh, C. Rao, C.K. Nandi, T.K. Mukherjee, ACS Appl. Nano Mater 5, 7427-7439 (2022)
73. Y.M. Chung, H.K. Rhee, CATAL LETT 85, 159-164 (2003)
74. B.D. Chandler, J.D. Gilbertson, Dendrimer catalysis 97-120 (2006)
75. J.S. Croley, K.J. Stevenson, UT-Austin 1-21 (2008)
76. R. Ricciardi, J. Huskens, W. Verboom, J. Flow Chem 5, 228-233 (2015)
77. B. Devadas, A.P. Periasamy, K. Bouzek, Coord. Chem. Rev 444, 214062 (2021)
78. A. Ostafin, K. Landfester, K. Artech House (2008)
79. A. Najer, D. Wu, D. Vasquez, C.G. Palivan, W. Meier, Nanomed 8, 425-447 (2013)
80. Y.C. Chen, The University of Utah (2011)
81. I. Louzao, J.C. van Hest, Biomacromolecules 14, 2364-237 (2013)
82. S.A. Dergunov, A.T. Khabiyev, S.N. Shmakov, M.D. Kim, N. Ehterami, M.C> Weiss, E. Pinkhassik, ACS nano 10, 11397-11406 (2016)
83. D.P. Patterson, B. Schwarz, K. El-Boubbou, J. van der Oost, P.E. Prevelige, T. Douglas, Soft Matter 8, 10158-10166 (2012)
84. P. Kraj, E. Selivanovitch, B. Lee, T. Douglas, Biomacromolecules 22, 2107-2118 (2021)
85. P. Tanner, P. Baumann, R. Enea, O. Onaca, C. Palivan, W. Meier, Acc. Chem. Res 44, 1039-1049 (2011)
86. C. Wu, Z. Xing, B. Fang, Y. Cui, Z. Li, W. Zhou, J. Mater. Chem 10, 180-191 (2022)
87. V.P. Nanikov, Chem. Rev 111, 418-454 (2011)
88. L. León-Boigues, L.A. érez, C. Mijangos, Polymers 13, 602 (2021)
89. K. Damarla, Y. Rachuri, E. Suresh, A. Kumar, Langmuir 34, 10081-10091 (2018)
90. M.A. Martínez, D. Aranda, E. Ortí, J. Aragó, L. Sánchez, Org. Chem. Front 10, 1959-1967 (2023)