Determination of total antioxidant capacity with nanoparticles
Subject Areas : Applications of Nanostructures
1 - Department of, Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 75147 Iran
Keywords: Antioxidant, Total Antioxidant Capacity, Nanoparticles, Free radical,
Abstract :
Total antioxidant capacity (TAC) as the cumulative activity of antioxidants in a sample is an important parameter in the analysis of biological or food matrices. Therefore, it is very important to evaluate the total antioxidant capacity of the substances in the diet and biological fluids. Based on this, many methods check their antioxidant capacity and effectiveness in different conditions. However, there is often no strong correlation between the capacities measured on the same materials with different methods, which is due to the variety of active materials, mechanisms and different characteristics such as different types of antioxidants, the presence of other interfering substances in the sample, lack of participation of antioxidants are used in the method reaction. In recent years, different analytical methods based on nanoparticles have been developed to determine the antioxidant capacity of foods and plant materials.In these measurement methods, nanoparticles such as gold, silver, iron oxide, manganese oxide, quantum dots and cerium oxide have been used. In this article, we review some of the researches conducted in the field of total antioxidant capacity measurement.
1. B. Halliwell, J.M. Gutteridge, Free radicals in biology and medicine: Oxford University Press, USA, 2015.
2. M. Valko, D. Leibfritz, J. Moncol, M.T.D. Cronin, M. Mazur, J. Telser, The International Journal of Biochemistry & Cell Biology, 39, 44 (2007).
3. S. Llesuy, P. Evelson, A. Campos, E. Lissi, Biological Research, 34, 51 (2001).
4. J. Hoyos-Arbeláez, M. Vázquez, J. Contreras-Calderón, Food chemistry,;221:1371-81 (2017).
5. M.F. Barroso, N. De-Los-Santos-Álvarez, C. Delerue-Matos, M.B.P.P. Oliveira, Biosensors and Bioelectronics, 30, 1 (2011).
6. A. Vasilescu, E. Sharpe, S. Andreescu, Current Analytical Chemistry, 8, 495 (2012).
7. E. Niki, Journal of Berry Research, 1, 169 (2011).
8. P.C. Wootton-Beard, A. Moran, L. Ryan, Food Research International, 44, 217 (2011).
9. A.B. Moreira, T.F.S. Teixeira, R.d.C.G. Alfenas, Nutrición Hospitalaria, 27, 1408 (2012).
10. M. Özyürek, K. Güçlü, R. Apak, TrAC Trends in Analytical Chemistry, 30, 652 (2011).
11. R.A. Freitas Jr, International Journal of Surgery, 3, 243 (2005).
12. D.T. Harris, M. Badowski, N. Ahmad, M.A.Gaballa, Expert Opinion on Biological Therapy, 7, 1311 (2007).
13. D. Falconnet, G. Csucs, H.M. Grandin, M. Textor, Biomaterials, 27, 3044 (2006).
14. A. Babu, A.K. Templeton, A. Munshi, R. Ramesh, Aaps Pharmscitech, 15, 709 (2014).
15. A. Szydłowska-Czerniak, A. Tułodziecka, E. Szłyk, Analyst, 137, 3750 (2012).
16. A. Andreu-Navarro, J.M. Fernández-Romero, A. Gómez-Hens, Analytica Chimica Acta, 695, 11 (2011).
17. T.G. Choleva, F.A. Kappi, D.L. Giokas, A.G. Vlessidis, Analytica Chimica Acta, 860, 61 (2015).
18. M. Bener, F.B. Şen, R. Apak, Talanta, 187, 148 (2018).
19. A. Tułodziecka, A. Szydłowska-Czerniak, Food Chemistry, 208, 142 (2016).
20. S. Teerasong, A. Jinnarak, S. Chaneam, P. Wilairat, D. Nacapricha, Talanta, 170, 193 (2017).
21. L. Li, P. Zhang, W. Fu, M. Yang, Y. Wang, Sensors and Actuators B: Chemical, 276, 158 (2018).
22. M. Özyürek, N. Güngör, S. Baki, K. Güçlü, R. Apak, Analytical Chemistry, 84, 8052 (2012).
23. F.A. Ozdemir Olgun, A. Üzer, B.D. Ozturk, R. Apak, Talanta, 182, 55 (2018).
24. A. Tułodziecka, A. Szydłowska-Czerniak Food Analytical Methods, 9, 3053 (2016).
25. B. Hemmateenejad, M. Shamsipur, T. Khosousi, M. Shanehsaz, O. Firuzi, Analyst, 137, 4029 (2012).
26. S. Benítez-Martínez, M. Valcárcel, Sensors and Actuators B: Chemical, 197, 350 (2014).
27. V. Gatselou, D.C. Christodouleas, A. Kouloumpis, D. Gournis, D.L. Giokas, Analytica Chimica Acta, 932, 80 (2016).
28. S. Sloan-Dennison, N.C. Shand, D. Graham, K. Faulds, Analyst, 142, 4715 (2017).
29. M.N. Alam, N.J. Bristi, M. Rafiquzzaman, Saudi Pharmaceutical Journal, 21, 143 (2013).
30. K. Ramachandran, A. Zahoor, T.R. Kumar, K.S. Nahm, A. Balasubramani, G.G. Kumar, Journal of Industrial and Engineering Chemistry, 46, 19 (2017).
31. C. López-Alarcón, A. Denicola, Analytica Chimica Acta, 763, 1 (2013).
32. G.A. Ali, M.M. Yusoff, E.R. Shaaban, K.F. Chong, Ceramics International, 43, 8440 (2017).
33. F. Della Pelle, D. Compagnone, Sensors, 18, 4622018 (2018).
34. H. Peng, Y. Li, C. Liu, X. Wei, H. Dong, L Yang, et al, Electrochimica Acta, 247, 745 (2017).
35. D. Vilela, M.C. González, A. Escarpa, TRAC Trends in Analytical Chemistry, 64, 1 (2015).
36. J. Yao, Q. Pan, S. Yao, L. Duan, J. Liu, Electrochimica Acta, 238, 30 (2017).
37. S. Saha, A. Pal, Separation and Purification Technology, 134, 26 (2014).
38. H. Chen, S. Zeng, M. Chen, Y. Zhang, L. Zheng, Q. Li, Small, 12, 2035 (2016).
39. M. Zhang, L. Xing, H. Ke, Y.-J. He, P.-F. Cui, Y. Zhu, et al, ACS Applied Materials & Interfaces, 9, 11337 (2017).
40. Y. Hao, L. Wang, B. Zhang, D. Li, D. Meng, J. Shi, et al, International Journal of Nanomedicine, 11, 1759 (2016).
41. J. Liu, L. Meng, Z. Fei, P.J. Dyson, X. Jing, X. Liu, Biosensors and Bioelectronics, 90, 69 (2017).
42. L. He, F. Wang, Y. Chen, Y. Liu, Luminescence, 33, 145 (2018).
43. W. Huang, Y. Deng, Y. He, Biosensors and Bioelectronics, 91, 89 (2017).
44. A. Roque, Jr. O. Wilson, Materials Science and Engineering: C, 28, 443 (2008).
45. S. Bajpai, M. Kumari, International Journal of Biological Macromolecules, 80, 177 (2015).
46. P.R. Devi, C.S. Kumar, P. Selvamani, N. Subramanian, K. Ruckmani, Materials Letters, 139, 241 (2015).
47. L. Zhang, F. Yu, A.J. Cole, B. Chertok, A.E. David, J. Wang, et al, The AAPS Journal, 11, 693 (2009).
48. M. Scampicchio, J. Wang, A.J. Blasco, A. Sanchez Arribas, S. Mannino, A. Escarpa, Analytical Chemistry, 78, 2060 (2006).
49. D. Vilela, M.C. González, A. Escarpa, Analytical and Bioanalytical Chemistry, 404, 341 (2012).
50. J. Wang, N. Zhou, Z. Zhu, J. Huang, G. Li, Analytical and Bioanalytical Chemistry, 388, 1199 (2007).
51. A. Andreu-Navarro, J. Fernández-Romero, A. Gómez-Hens, Analytica Chimica Acta, 695, 11 (2011).
52. Y. Rao, X. Zhao, Z. Li, J. Huang, Talanta, 190, 174 (2018).
53. S. Teerasong, A. Jinnarak, S. Chaneam, P. Wilairat, D. Nacapricha, Talanta, 170, 193 (2017).
54. A.A. Bhutto, Ş. Kalay, S. Sherazi, M. Culha, Talanta, 189, 174 (2018).
55. F. Della Pelle, A. Scroccarello, M. Sergi, M. Mascini, M. Del Carlo, D. Compagnone, Food Chemistry, 256, 342 (2018).
56. M. Özyürek, N. Güngör, S. Baki, K. Güçlü, Ra. Apak, Analytical Chemistry, 84, 8052 (2012).
57. F.A.O. Olgun, A. Üzer, B.D. Ozturk, R. Apak, Talanta, 182, 55 (2018).
58. H. J aberie, S. Momeni, I. Nabipour, Microchemical Journal, 157, 104908 (2020).