Schiff base complex of 2-(2-hydroxybenzylidene)hydrazine-1-carbothioamide containing zirconium oxide on mesoporous KIT-6 as a selective and recyclable nanocatalyst for the synthesis of tetrahydrobenzo[b]pyrans
Subject Areas : Applications of Nanostructures
Elham Mohseni
1
,
Bahman Tahmasbi
2
*
1 - Department of Chemistry, Faculty of Science, Ilam University, P. O. Box 69315516, Ilam, Iran.
2 - Department of Chemistry, Faculty of Science, Ilam University, P. O. Box 69315516, Ilam, Iran.
Keywords: Mesoporous KIT-6, Multicomponent reactions, Recyclable nanocatalyst, Tetrahydrobenzo[b]pyrans, Schiff-base complex.,
Abstract :
In this work, the 2-(2-hydroxybenzylidene)hydrazine-1-carbothioamide (HBHCTA) as ligand was synthesized from the condensation reaction between hydrazine carbothioamide and 2-hydroxybenzaldehyde. Also, mesoporous KIT-6 was synthesized by a simple method using P123, tetraethyl orthosilicate (TEOS, as a silica source) and n-butanol. Then, the surface of mesoporous KIT-6 was modified by 3-iodopropyl trimethoxysilane (IPTMS) and then functionalized by HBHCTA. Finally, zirconium oxide was immobilized on the surface of modified KIT-6, which was named Zr(O)-HBHCTA@KIT-6. The Zr(O)-HBHCTA@KIT-6 nanocatalyst was characterized using SEM, WDX, BET and XRD techniques. Then, the catalytic application of Zr(O)-HBHCTA@KIT-6 was investigated in the selective synthesis of tetrahydrobenzo[b]pyran derivatives. A green solvent was used to synthesize tetrahydrobenzo[b]pyran derivatives in the presence of this nanocatalyst. All tetrahydrobenzo[b]pyran derivatives were synthesized with high yields and in very short reaction times in the presence of this nanocatalyst. In addition, the Zr(O)-HBHCTA@KIT-6 nanocatalyst showed a good homoselectivity in the synthesis of tetrahydrobenzo[b]pyran compounds. The homoselectivity of this nanocatalyst was investigated using NMR spectroscopy and physical data such as melting point. This nanocatalyst has the ability to be reused without significant decreases in its performance in the synthesis of tetrahydrobenzo[b]pyran derivatives.
1. B. H. Rotstein, S. Zaretsky, V. Rai and A. K. Yudin, Chemical reviews, 2014, 114, 8323-8359.
2. A. Domling, W. Wang and K. Wang, Chemical reviews, 2012, 112, 3083-3135.
3. B. Jiang, T. Rajale, W. Wever, S. J. Tu and G. Li, Chemistry–An Asian Journal, 2010, 5, 2318-2335.
4. S. Zhi, X. Ma and W. Zhang, Organic & Biomolecular Chemistry, 2019, 17, 7632-7650.
5. C. S. Graebin, F. V. Ribeiro, K. R. Rogério and A. E. Kümmerle, Current Organic Synthesis, 2019, 16, 855-899.
6. Z. Hippe and I. Ugi, 1998.
7. J. Zhu, European Journal of Organic Chemistry, 2003, 2003, 1133-1144.
8. A. Váradi, T. C. Palmer, R. Notis Dardashti and S. Majumdar, Molecules, 2015, 21, 19.
9. I. A. Ibarra, A. Islas-Jácome and E. González-Zamora, Organic & Biomolecular Chemistry, 2018, 16, 1402-1418.
10. A. Mandal and A. T. Khan, Organic & Biomolecular Chemistry, 2024.
11. H. K. Beker and Ş. Kaban, Current Organic Synthesis, 2024, 21, 292-297.
12. P. Langer, European Journal of Organic Chemistry, e202400153.
13. R. Javahershenas, A. Makarem and K. D. Klika, RSC advances, 2024, 14, 5547-5565.
14. N. Isambert, M. d. M. S. Duque, J.-C. Plaquevent, Y. Genisson, J. Rodriguez and T. Constantieux, Chemical Society Reviews, 2011, 40, 1347-1357.
15. L. R Melo and W. A Silva, Current Green Chemistry, 2016, 3, 120-132.
16. B. A. Neto, R. O. Rocha and A. A. Lapis, Current Opinion in Green and Sustainable Chemistry, 2022, 35, 100608.
17. J. Yu, F. Shi and L.-Z. Gong, Accounts of chemical research, 2011, 44, 1156-1171.
18. S. M Chinchkar, J. D Patil, S. N Korade, G. S Gokavi, R. V Shejawal and D. M Pore, Letters in Organic Chemistry, 2017, 14, 403-408.
19. R. C. Cioc, E. Ruijter and R. V. Orru, Green Chemistry, 2014, 16, 2958-2975.
20. M. S. Singh and S. Chowdhury, Rsc Advances, 2012, 2, 4547-4592.
21. D. Das, ChemistrySelect, 2016, 1, 1959-1980.
22. A. Kakeshpour, A. Moradi, M. Maghsoodlou and F. Moradi, Journal of Pharmaceutical Research International, 2024, 36, 13-26.
23. B. Maleki, A. Jamshidi, S. Peiman and M. R. Housaindokht, Polycyclic Aromatic Compounds, 2024, 44, 994-1010.
24. R. Bakhshali‐Dehkordi, M. A. Ghasemzadeh and J. Safaei‐Ghomi, Applied Organometallic Chemistry, 2020, 34, e5721.
25. K. Ojaghi Aghbash, N. Noroozi Pesyan and H. Batmani, Applied Organometallic Chemistry, 2019, 33, e5227.
26. Y. Abdollahi Kheradmand, F. Salimi and A. Oji Moghanlou, Catalysis Letters, 2024, 154, 3054-3077.
27. A. M. Bistgani and L. Moradi, Microporous and Mesoporous Materials, 2024, 372, 113113.
28. K. Rabiei and S. Niyazi, Polycyclic Aromatic Compounds, 2023, 43, 3473-3488.
29. D. Azarifar, Y. Abbasi, M. Jaymand, M. A. Zolfigol, M. Ghaemi and O. Badalkhani, Journal of Organometallic Chemistry, 2019, 895, 55-63.
30. Z. Esam, M. Akhavan and A. Bekhradnia, Applied Organometallic Chemistry, 2021, 35, e6005.
31. M. Daraie, R. Mirsafaei and M. M. Heravi, Current Organic Synthesis, 2019, 16, 145-153.
32. A. Jabbari, P. Moradi and B. Tahmasbi, RSC advances, 2023, 13, 8890-8900.
33. B. Tahmasbi, P. Moradi and M. Darabi, Nanoscale Advances, 2024, 6, 1932.
34. M. Darabi, M. Nikoorazm, B. Tahmasbi and A. Ghorbani-Choghamarani, RSC advances, 2023, 13, 12572-12588.
35. R. Kishor, S. B. Singh and A. K. Ghoshal, International Journal of Hydrogen Energy, 2018, 43, 10376-10385.
36. M. Darabi , M. Nikoorazm, B. Tahmasbi, Inorganic Chemistry Communications 2025, 177, 114454.
37. E. Mohseni, A. Ghorbani‑Choghamarani, B. Tahmasbi, M. Norouzi, M. Akbari, Journal of Inorganic and Organometallic Polymers and Materials, 2025, https://doi.org/10.1007/s10904-024-03532-3
38. M. Akbari, M. Nikoorazm, B. Tahmasbi, A. Ghorbani-Choghamarani, Applied Organometallic Chemistry, 2024, 38, e7317.
39. M. Akbari, M. Nikoorazm, B. Tahmasbi and A. Ghorbani-Choghamarani, Inorganic Chemistry Communications, 2023, 111852.
40. F. He, J. Luo and S. Liu, Chemical Engineering Journal, 2016, 294, 362-370.
41. M. Nikoorazm, B. Tahmasbi, M. Darabi, Y. A. Tyula, S. Gholami, M. Khanmoradi and M. Koolivand, Journal of Porous Materials, 2023, 1-16.