Examining the in vitro and in vivo Effects of the HL-10 Peptide on the Immune System Modulation and Anticancer Activities of Hela Cancer Cells
Subject Areas : Journal of Animal BiologyMaryam Rezavand 1 , Zahra Setayesh-Mehr 2 * , Fatemeh Hadadi 3
1 - Department of Biology, Faculty of Sciences, Zabol University, Zabol, Iran
2 - Department of Biology, Faculty of Sciences, Zabol University, Zabol, Iran
3 - Department of Biology, Faculty of Sciences, Zabol University, Zabol, Iran
Keywords: Peptide, Cancer, Apoptosis, Inflammatory factor, Immune system,
Abstract :
The present study aimed to assess the anti-cancer properties, immune system regulation, and apoptosis signaling pathway impact of the HL-10 peptide through gene expression analysis of Bcl-2, Cytochrome c, and Bim. HeLa cervical cancer cells were subjected to treatment with HL-10 peptide for both 24 and 48 hours at varying concentrations. To assess the in vivo impacts of the HL-10 peptide, BALB-c mice were infected with cervical cancer. Serum levels of IFN-β and IL-4 were subsequently quantified via ELISA. Using real-time PCR, the expression of the genes Bim, Cytochrome c, and Bcl-2 in cells and tumors treated with the HL-10 peptide was analyzed, along with the percentage of viable cells and toxicity. The HL-10 peptide decreases the survival rate of HeLa cells in a way that is dependent on both the concentration and duration of exposure. The HL-10 peptide exhibited an IC50 value of 18.49 μM after 24 hours and 30.62 μM after 48 hours. The findings demonstrated that the HL-10 peptide exerted a significant impact on the expression of the investigated genes. The HL-10 peptide upregulated the expression of the BIM and Cytochrome c genes while downregulating the expression of the Bcl-2 gene in cancer cells treated with the HL-10 peptide, both in vitro and in vivo. The results indicated a significant decrease in the quantity of inflammatory components INF-γ, IL-1β, and IL-6 in the serum of untreated cancer mice (Sham) compared to untreated healthy mice (NC). Conversely, there was a significant rise in the concentration of IL-4 (p < 0.05). The HL-10 peptide likely functions in the modulation of the immune system and in the intrinsic pathways of apoptosis. The HL-7 peptide appears to be a viable and auspicious candidate in the realm of cervical cancer treatment.
1. Abdel-Salam M.A.L., Pinto B., Cassali G., Bueno L., Pegas G., Oliveira F., Silve I., Klein A., de Souza-Fagundes E.M., de Lima M.E., Carvalho-Tavares J., 2021. LyeTx I-b peptide attenuates tumor burden and metastasis in a mouse 4T1 breast cancer model. Antibiotics (Basel), 10(9):1136.
2. Biron C.A., Nguyen K.B., Pien G.C., Cousens L.P., Salazar-Mather T.P., 1999. Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annual Review of Immunology, 17:189-220.
3. Gao L., Shan B.E., Chen J., Liu J.H., Song D.X., Zhu B.C., 2005. Effects of spider Macrothele raven venom on cell proliferation and cytotoxicity in HeLa cells. Acta Pharmacologica Sinica, 26:369-376.
4. Gu Y., Liu S-L., Ju W-Z., Li C-Y., Cao P., 2013. Analgesic-antitumor peptide induces apoptosis and inhibits the proliferation of SW480 human colon cancer cells. Oncology letters, 5(2): 483-488.
5. Guo Y., Srinivasula S.M., Druilhe A., Fernandes-Alnemri T., Alnemri E.S., 2002. Caspase-2 induces apoptosis by releasing proapoptotic proteins from mitochondria. Journal of Biological Chemistry, 277(16): 13430-13437.
6. Gupta S.D., Gomes A., Debnath A., Saha A., Gomes A., 2010. Apoptosis induction in human leukemic cells by a novel protein Bengalin, isolated from Indian black scorpion venom: through mitochondrial pathway and inhibition of heat shock proteins. Chemico-Biological Interactions, 183:293-303.
7. Harirchi I., Karbaksh M., Kashefi A., Momtahen A.J., 2004. Breast cancer in Iran: results of a multi-center study. Asian Pacific Journal of Cancer Prevention, 5(1):24-27.
8. Heidari Esfahani E., Doosti A., 2021. The Effects of melittin coding gene of bee venom on Bcl-2 and Bax genes expression in ACHN cells. Anatomical Sciences Journal, 18(2):85-91.
9. Hoskin D.W., Ramamoorthy A., 2008. Studies on anticancer activities of antimicrobial peptides. Biochimica et Biophysica Acta, 1778(2):357-375.
10. Jeyaprakash J., Hoy M.A., 2009. First divergence time estimate of spiders, scorpions, mites and ticks (subphylum: Chelicerata) inferred from mitochondrial phylogeny. Experimental and Applied Acarology, 47(1):1-18.
11. Kawakami K., Kawakami M., Husain S.R., Puri R.K., 2003. Effect of interleukin (IL)-4 cytotoxin on breast tumor growth after in-vivo gene transfer of IL-4 receptor alpha chain. Clinical Cancer Research, 9(5):1826-1836.
12. Lee H.L., Park S.H., Kim T.M., Jung Y.Y., Park M.H., Oh S.H., Yun H.S., Jun H.O., Yoo H.S., Han S.B., Lee U.S., Yoon J.H., Song M.J., Hong J.T., 2015. Bee venom inhibits growth of human cervical tumors in mice. Oncotarget, 6(9):7280-7292.
13. Liu Z., Deng M., Xiang J., Ma H., Hu W., Zhao Y., Li D.W.C., Liang S., 2012. A novel spider peptide toxin suppresses tumor growth through dual signaling pathways. Current Molecular Medicine, 12(10):1350-1360.
14. Meki A.R., Nassar A.Y., Rochat H., 1995. A bradykinin-potentiating peptide (peptide K12) isolated from the venom of Egyptian scorpion Buthus occitanus. Peptides, 16(8): 1359-1365.
15. Mikaelian A.G., Traboulay E., Zhang X.M., Yeritsyan E., Pedersen P.L., Hee Ko.Y., Matalka K.Z., 2020. Pleiotropic Anticancer properties of scorpion venom peptides: Rhopalurus princeps venom as an anticancer agent. Drug Design, Develop and Therapeutics, 14:881-893.
16. Miyashita M., Sakai A., Matsushita N., Hanai Y., Nakagawa Y., Miyagawa H., 2010. A novel amphipathic linear peptide with both insect toxicity and antimicrobial activity from the venom of the scorpion Isometrus maculatus. Bioscience, Biotechnology, and Biochemistry, 74(2): 364-369.
17. Moon D-O., Park S-Y., Heo M-S., Kim K-C., Park C., Ko W.S., 2006. Key regulators in bee venom-induced apoptosis are Bcl-2 and caspase-3 in human leukemic U937 cells through downregulation of ERK and Akt. International immunopharmacology, 6(12):1796-1807.
18. Ortiz E., Gurrola G.B., Schwartz E.F., Possani L.D., 2015. Scorpion venom components as potential candidates for drug development. Toxicon, 93:125-135.
19. Otsuki N., Dang N.H., Kumagai E., Kondo A., Iwata S., Morimoto C., 2010. Aqueous extract of Carica papaya leaves exhibits anti-tumor activity and immunomodulatory effects. Journal of Ethnopharmacology, 127(3):760-767.
20. Petricevich V.L., Lebrun I., 2005. Immunomodulatory effects of the Tityus serrulatus venom on murine macrophage functions in-vitro. Mediators of Inflammation, 1:39-49.
21. Pipelzadeh M.H., Dezfulian A.R., Jalali M.T., Mansori A.K. 2006. In vitro and in vivo studies on some toxic effects of the venom from Hemiscorpious lepturus scorpion. Toxicon, 48: 93-103.
22. Piperi C., Zisakis A.W., Lea R., Kalofoutis A., 2005. Role of cytokines in the regulation of glioma tumour growth and angiogenesis. American Journal of Immunology, 1:106-113.
23. Possani L.D., Becerril B., Delepierre M., Tytgat J., 1999. Scorpion toxins specific for Na+-channels. European Journal of Biochemistry, 264:287-300.
24. Riedl S., Zweytick D., Lohner K. 2011. Membrane-active host defense peptides-challenges and perspectives for the development of novel anticancer drugs. Chemistry and Physics of Lipids, 164(8):766-781.
25. Satitmanwiwat S., Changsangfa C., Khanuengthong A., Promthep K., Roytrakul S., Arpornsuwan T., 2016. The scorpion venom peptide BmKn2 induces apoptosis in cancerous but not in normal human oral cells. Biomedicine & Pharmacotherapy, 84: 1042-1050.
26. Setayesh-Mehr Z., Asoodeh A., 2017. The inhibitory activity of HL-7 and HL-10 peptide from scorpion venom (Hemiscorpius lepturus) on angiotensin converting enzyme: Kinetic and docking study, Bioorganic Chemistry, 75:30-37.
27. Setayesh-Mehr Z., Asoodeh A., 2019. Inhibitory effect of HL-7 and HL-10 peptides on human breast cancer cells by induction of the expression of antioxidant enzymes. International Journal of Peptide Science and Therapeutics, 25(40):1343-1341.
28. Setayesh-Mehr Z., Asoodeh A., Poorsargol M., 2021. Upregulation of Bax, TNF-α and down-regulation of Bcl-2 in liver cancer cells treated with HL-7 and HL-10 peptides. Biologia, 76:2735-2743.
29. Sun X., Xu Q., Zeng L., Xie L., Zhao Q., Xu H., Wang X., Jiang N., Fu P., Sang M., 2020. Resveratrol suppresses the growth and metastatic potential of cervical cancer by inhibiting STAT3Tyr705 phosphorylation. Cancer Medicine. 9(22):8685-8700.
30. Wang Y.K., He H.L., Wang G.F., Wu H., Zhou B.C., Chen X.L., Zhang Y.Z., 2010. Oyster (Crassostrea gigas) hydrolysates produced on a plant scale have antitumor activity and immunostimulating effects in BALB/c mice. Marine Drugs, 8(2):255-268.
31. Willems J., Moerman L., Bosteels S., Bruyneel E., Ryniers F., Verdonck F., 2004. Parabutoporin an antibiotic peptide from scorpion venom can both induce activation and inhibition of granulocyte cell functions. Peptides, 25(7):1079-1084.
32. Yan W., Lu J., Li G., Wei H., Ren W.H., 2018. Amidated Scolopin-2 inhibits proliferation and induces apoptosis of Hela cells in vitro and in vivo. Biotechnology and Applied Biochemistry, 65:672-679.
33. Yglesias-Rivera A., Sánchez-Rodríguez H., Soto-Febles C., Monzote L., 2023. Heteroctenus junceus scorpion venom modulates the concentration of pro-inflammatory cytokines in F3II tumor cells. Life (Basel), 13(12):2287.
34. Zeng X.C., Li W.X., Peng F., Zhu Z.H. 2000. Cloning and characterization of a novel cDNA sequence encoding the precursor of a novel venom peptide (BmKbpp) related to a bradykinin-potentiating peptide from Chinese scorpion Buthus martensii Karsch. IUBMB Life, 49(3):207-210.
35. Zeng X., Corzo G., Hahin R., 2005. Scorpion venom peptides without disulfide bridges. IUBMB Life, 57(1):13-21.